DOI QR코드

DOI QR Code

Synthesis of 2-Arylbenzothiazoles Catalyzed by Biomimetic Catalyst, β-Cyclodextrin

  • Londhe, Balaji S. (Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University) ;
  • Pratap, Umesh R. (Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University) ;
  • Mali, Jyotirling R. (Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University) ;
  • Mane, Ramrao A. (Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University)
  • Received : 2010.05.12
  • Accepted : 2010.06.29
  • Published : 2010.08.20

Abstract

Cyclocondensation of 2-aminothiophenol and aryl/heteryl aldehydes has been carried using biomimetic catalyst, $\beta$-Cyclodextrin in water and obtained 2-aryl/heteryl benzothiazoles with better to excellent yields. This biomimetic catalyzed route is simple, economic, and environmentally benign.

Keywords

References

  1. Hutchinson, I.; Jennings, S. A.; Vishnuvajjala, B. R.; Westwell, A. D.; Stevens, M. F. G. J. Med. Chem. 2002, 45, 744. https://doi.org/10.1021/jm011025r
  2. Hutchinson, I.; Chua, M. S.; Browne, H. L.; Trapani, V.; Bradshaw, T. D.; Westwell, A. D.; Stevens, M. F. G. J. Med. Chem. 2001, 44, 1446. https://doi.org/10.1021/jm001104n
  3. Chen, C.; Chen, Y. J. Tetrahedron Lett. 2004, 45, 113. https://doi.org/10.1016/j.tetlet.2003.10.095
  4. Tale, R. H. Org. Lett. 2002, 4, 1641. https://doi.org/10.1021/ol020027i
  5. Mathis, C. A.; Wang, Y. M.; Holt, D. P.; Huang, G. F.; Debnath, M. L.; Klunk, W. E. J. Med. Chem. 2003, 46, 2740. https://doi.org/10.1021/jm030026b
  6. Jackson, Y. A.; Lyon, M. A.; Townsend, N.; Bellabe, K.; Soltanik, F. J. Chem. Soc. Perkin Trans. 1 2000, 205.
  7. Das, J.; Moquin, R. V.; Liu, C.; Doweyko, A. M.; Defex, H. F.; Fang, Q.; Pang, S.; Pitt, S.; Shen, D. R.; Schieven, G. L.; Barrish, J. C. J. Bioorg. Med. Chem. Lett. 2003, 13, 2587. https://doi.org/10.1016/S0960-894X(03)00511-0
  8. Hays, S. J.; Rice, M. J.; Ortwine, D. F.; Johnson, G.; Schwarz, R. D.; Boyd, D. K.; Copeland, L. F.; Vartanian, M. G.; Boxer, P. A. J. Pharm. Sci. 1994, 83, 1425. https://doi.org/10.1002/jps.2600831013
  9. Foscolos, G.; Tsatsas, G.; Champagnac, A.; Pommier, M. Ann. Pharm. Fr. 1977, 35, 295.
  10. Shirke, V. G.; Bobad, A. S.; Bhamaria, R. P.; Khadse, B. G.; Sengupta, S. R. Indian Drugs 1990, 27, 350.
  11. Paget, C. J.; Kisner, K.; Stone, R. L.; Delong, D. C. J. Med. Chem. 1969, 12, 1016. https://doi.org/10.1021/jm00306a011
  12. Gong, B.; Hong, F.; Kohm, C.; Bonham, L.; Klein, P. Bioorg. Med. Chem. Lett. 2004, 14, 1455. https://doi.org/10.1016/j.bmcl.2004.01.023
  13. Hutchinson, I.; Bradshaw, T. D.; Matthews, C. S.; Stevens, M. F. G.; Westwell, A. D. Bioorg. Med. Chem. Lett. 2003, 13, 471. https://doi.org/10.1016/S0960-894X(02)00930-7
  14. Ivanov, S. K.; Yuritsyn, V. S. Chem. Abstr. 1971, 74, 124487m.
  15. Chen, Y. X.; Qian, L. F.; Zhang, W.; Han, B. Angew. Chem. Int. Ed. 2008, 47, 9330. https://doi.org/10.1002/anie.200803381
  16. Bahrami, K.; Khodaei, M. M.; Naali, F. J. Org. Chem. 2008, 17, 6835.
  17. Chakraborti, A. K.; Rudrawar, S.; Jadhav, K. B.; Kaur, G.; Chankeshwara, S. V. Green Chem. 2007, 9, 1335. https://doi.org/10.1039/b710414f
  18. Azarifar, D.; Maleki B.; Setayeshnazar M. Phosphorus, Sulfur Silicon Relat. Elem. 2009, 184, 2097. https://doi.org/10.1080/10426500802423933
  19. Hein, D. W.; Alheim, R. J.; Leavitt, J. J. J. Am. Chem. Soc. 1957, 79, 427. https://doi.org/10.1021/ja01559a053
  20. Mourtas, S.; Gatos, D.; Barlos, K. Tetrahedron Lett. 2001, 42, 2201. https://doi.org/10.1016/S0040-4039(01)00109-5
  21. Njoya, Y.; Gellis, A.; Crozet, M.; Vanelle, P. Sulfur Lett. 2003, 26, 67. https://doi.org/10.1080/0278611031000104970
  22. Chakraborti, A. K.; Selvam, C.; Kaur, G.; Bhagat, S. Synlett 2004, 851.
  23. Yildiz-Oren, I.; Yalcin, I.; Aki-Sener, E. Eur. J. Med. Chem. 2004, 39, 291. https://doi.org/10.1016/j.ejmech.2003.11.014
  24. Rudrawar, S.; Kondaskar, A.; Chakraborti, A. K. Synthesis 2005, 15, 2521.
  25. Laskar, I. R.; Chen, T. M. Chem. Mater. 2004, 16, 117.
  26. Nadaf, R. N.; Siddiqui, S. A.; Daniel T.; Lahoti, R. J.; Srinivasan, K. V. J. Mol. Catal. A: Chem. 2004, 214, 155. https://doi.org/10.1016/j.molcata.2003.10.064
  27. Matsushita, H.; Lee, S. H.; Joung, M.; Clapham, B.; Janda, K. D. Tetrahedron Lett. 2004, 45, 313. https://doi.org/10.1016/j.tetlet.2003.10.168
  28. Chakraborti, A. K.; Selvam, C.; Kaur, G.; Bhagat, S. Synlett 2004, 851.
  29. Evindar, G.; Batey, R. A. J. Org. Chem. 2006, 71, 1802. https://doi.org/10.1021/jo051927q
  30. Itoh, T.; Mase, T. Org. Lett. 2007, 9, 3687. https://doi.org/10.1021/ol7015737
  31. Bose, S. D.; Idrees, M.; Srikanth, B. Synthesis 2007, 819.
  32. Hutchinson, I.; Stevens, M. F. G.; Westwel, A. D. Tetrahedron Lett. 2000, 41, 425. https://doi.org/10.1016/S0040-4039(99)02076-6
  33. Mu, X. J.; Zou, J. P.; Zeng, R. S.; Wu, J. C. Tetrahedron Lett. 2005, 46, 4345. https://doi.org/10.1016/j.tetlet.2005.04.090
  34. Majo, V. J.; Prabhakaran, J.; Mann, J. J.; Kumar, J. S. D. Tetrahedron Lett. 2003, 44, 8535. https://doi.org/10.1016/j.tetlet.2003.09.138
  35. Pratap, U. R.; Mali, J. R.; Jawale, D. V.; Mane, R. A. Tetrahedron Lett. 2009, 50, 1352 https://doi.org/10.1016/j.tetlet.2009.01.032
  36. Benjamin, G. D.; Viviane, B. Nat. Prod. Rep. 2001, 18, 618. https://doi.org/10.1039/b003667f
  37. Wong, C. H.; Whitesides, G. M. Enzymes in Synthetic Organic Chemistry; Tetrahedron Organic Chemistry Series: 1994; Vol. 12, p 1.
  38. Bommarius, A. S.; Riebel, B. R. Biocatalysis; Wiley-VCH Verlag GmbH & Co.: 2004; Weinheim, p 1-15.
  39. Kumar, V. P.; Narender, M.; Sridhar, R.; Nageswar, Y. V. D.; Rama Rao, K. Syn. Commun. 2007, 37, 4331. https://doi.org/10.1080/00397910701575913
  40. Surendra, K.; Krishnaveni, N. S.; Sridhar, R.; Rama Rao, K. J. Org. Chem. 2006, 71, 5819. https://doi.org/10.1021/jo060805a
  41. Krishnaveni, N. S.; Surendra, K.; Reddy, M. A.; Nageswar, Y. V. D.; Rama Rao, K. J. Org. Chem. 2003, 68, 2018. https://doi.org/10.1021/jo026482+
  42. Narender, M.; Reddy, M. S.; Kumar, V. P.; Reddy, V. P.; Nageswar, Y. V. D.; Rama Rao, K. J. Org. Chem. 2007, 72, 1849. https://doi.org/10.1021/jo062421q
  43. Surendra, K.; Srilakshmi, K. N.; Mahesh, A.; Rama Rao, K. J. Org. Chem. 2006, 71, 2532. https://doi.org/10.1021/jo052510n
  44. Surendra, K.; Srilakshmi, K. N.; Nageswar, Y. V. D.; Rama Rao, K. J. Org. Chem. 2003, 68, 4994. https://doi.org/10.1021/jo034194n
  45. Madhav, B.; Narayana, M. S.; Reddy, V. P.; Rama Rao, K.; Nageswar, Y.V.D. Tetrahedron Lett. 2009, 50, 6025. https://doi.org/10.1016/j.tetlet.2009.08.033
  46. Breslow, R.; Steven, D. D. Chem. Rev. 1998, 98, 1997. https://doi.org/10.1021/cr970011j
  47. Bhosale, S. V. Mini. Rev. Org. Chem. 2007, 4, 3. https://doi.org/10.2174/157019307779815938
  48. Szejtli, J.; Osa, T. Comprehensive Supramolecular Chemistry; Vol. 3, Pergamon: 1996; New York.

Cited by

  1. Sulfonated Porous Carbon (SPC)-Catalyzed Synthesis of Benzothiazole Derivatives in Water vol.187, pp.4, 2012, https://doi.org/10.1080/10426507.2011.631642
  2. as a New and Efficient Oxidant vol.33, pp.2, 2012, https://doi.org/10.5012/bkcs.2012.33.2.515
  3. Solvent-Free One Pot Synthesis of 2-aryl/Heteroarylbenzothiazoles Using Hypervalent Iodine (III) Reagents vol.49, pp.5, 2012, https://doi.org/10.1002/jhet.962
  4. Sulfamic acid as a recyclable and green catalyst for rapid and highly efficient synthesis of 2-arylbenzothiazoles in water at room temperature vol.9, pp.4, 2012, https://doi.org/10.1007/s13738-011-0059-y
  5. Al-Pillared Ghassoulite Clay as a New Green Catalyst for the Synthesis of Benzothiazoles and Benzimidazoles: Effect of Amine/CEC Ratio vol.03, pp.02, 2013, https://doi.org/10.4236/ijoc.2013.32018
  6. Medicinal significance of benzothiazole scaffold: an insight view vol.28, pp.2, 2013, https://doi.org/10.3109/14756366.2012.720572
  7. -aminothiophenol and its derivatives as versatile synthons vol.35, pp.5, 2014, https://doi.org/10.1080/17415993.2014.934245
  8. Bismuth nitrate as an efficient catalyst for the preparation of 2-arylbenzothiazole derivatives vol.40, pp.4, 2014, https://doi.org/10.1007/s11164-013-1072-9
  9. Palladium-Catalyzed Hydroxylation of Aryl and Heteroaryl Halides Enabled by the Use of a Palladacycle Precatalyst vol.79, pp.11, 2014, https://doi.org/10.1021/jo500662s
  10. β-Cyclodextrin: A Biomimetic Catalyst used for the Synthesis of 4H-chromene-3-carbonitrile and Tetrahydro-1H-xanthen-1-one Derivatives vol.145, pp.12, 2015, https://doi.org/10.1007/s10562-015-1588-2
  11. Formation of a nanorod shaped ionogel and its high catalytic activity for one-pot synthesis of benzothiazoles vol.39, pp.7, 2015, https://doi.org/10.1039/C5NJ00454C
  12. Efficient sodium bisulfite-catalyzed synthesis of benzothiazoles and their potential as ureases inhibitors vol.5, pp.36, 2015, https://doi.org/10.1039/C5RA01081K
  13. Novel synthesis of 1,4-benzothiazines in water accelerated by β-cyclodextrin vol.13, pp.3, 2016, https://doi.org/10.1007/s13738-015-0752-3
  14. Supramolecular catalysis by β-cyclodextrin for the synthesis of kojic acid derivatives in water vol.40, pp.2, 2016, https://doi.org/10.1039/C5NJ01902H
  15. Reusable proline-based ionic liquid catalyst for the simple synthesis of 2-arylbenzothiazoles in a biomass medium vol.42, pp.3, 2016, https://doi.org/10.1007/s11164-015-2133-z
  16. Calcinized eggshell: an environmentally benign green catalyst for synthesis of 2-arylbenzothiazole derivatives vol.42, pp.7, 2016, https://doi.org/10.1007/s11164-016-2463-5
  17. β-Cyclodextrin as a Biomimetic Catalyst for the Efficient Synthesis of 4-Oxo-pyrido[1,2-a] Pyrimidine-3-Carbonitrile in Aqueous Medium vol.147, pp.3, 2017, https://doi.org/10.1007/s10562-017-1983-y
  18. β-Cyclodextrin as a Supramolecular Catalyst for the Synthesis of 1H-Pyrazolo[1,2-b]phthalazine-5,10-dione Derivatives in Water vol.147, pp.6, 2017, https://doi.org/10.1007/s10562-017-2032-6
  19. β-Cyclodextrin: A Green and Efficient Supramolecular Catalyst for Organic Transformations pp.15278999, 2018, https://doi.org/10.1002/tcr.201800016
  20. Straightforward multicomponent synthesis of pyrano[2,3-d]pyrimidine-2,4,7-triones in β-cyclodextrin cavity and evaluation of their anticancer activity pp.1735-2428, 2019, https://doi.org/10.1007/s13738-019-01633-2
  21. Microwave-assisted one-pot synthesis of benzothiazole and benzoxazole libraries as analgesic agents vol.124, pp.3, 2012, https://doi.org/10.1007/s12039-012-0251-3
  22. β-Cyclodextrin Based Nanosponges in Organic Synthesis vol.23, pp.21, 2010, https://doi.org/10.2174/1385272823666191029115623
  23. One-Pot Three Component Synthesis of 2-(1H-Benzo[d]thiazole-2-yl)- N-Arylbenzamides in Glycerol Medium vol.32, pp.6, 2020, https://doi.org/10.14233/ajchem.2020.22538