DOI QR코드

DOI QR Code

Fatigue Life and Stress Spectrum of Wing Structure of Aircraft

항공기 주익 구조물의 응력스펙트럼 및 피로수명 추정에 관한 연구

  • 강기원 (군산대학교 기계자동차공학부) ;
  • 고승기 (군산대학교 기계자동차공학부) ;
  • 최동수 (공군 군수사령부 항공기술연구소) ;
  • 김태성 ((주)LSCable)
  • Received : 2010.05.06
  • Accepted : 2010.06.24
  • Published : 2010.09.01

Abstract

Aged aircraft have several cracks as a results of long-term service, and these cracks affect the safety and decrease the rate of operation of the aircraft. To solve these problems, crack propagation analysis should be performed to determine the service life at fatigue critical location(FCL). It is, however, almost impossible to obtain the stress spectrum, which is crucial for crack propagation analysis of the FCLs of wing structure of aged aircraft. In this study, to analyze the fatigue crack propagation behavior at the FCL of an aged aircraft, first finite element analysis is performed for a 3D geometry model of the aircraft wing structure, which is obtained using CATIA based on the paper drawings. Then, the transfer function and stress-spectrum of the FCL are derived using the load factor data and the FEA results. Finally, the crack propagation rates of the FCL are evaluated using the commercial software, NASGRO 6.0.

장기운영된 항공기에는 비행시간의 누적에 따라 다양한 피로균열이 발생하며 이는 운영상 안전성 및 가동률을 저하시키는 요인이 된다. 이의 해결을 위하여 피로임계위치(Fatigue critical location, FCL)에 대한 균열 진전 해석은 매우 중요하다. 그러나 이러한 장기 운영된 항공기의 경우, 균열 진전 해석에 필수적인 FCL에서의 응력 스펙트럼 획득은 거의 불가능한 실정이다. 본 연구에서는 장기운영된 항공기 주익 구조물의 FCL에서의 균열 진전 해석을 수행하기 위하여, 먼저 주익 구조물에 대한 2차원 하드카피 형태의 도면으로부터 구축된 3차원 CAD 모델에 대한 유한요소해석을 수행하였다. 또한 이러한 유한요소해석 결과 및 제한된 하중배수 자료를 기반으로 FCL에서의 전달함수와 응력 스펙트럼을 산출하였다. 상기 자료를 바탕으로 상용 균열 진전 해석 코드인 NASGRO를 이용하여 FCL에서의 균열진전해석을 수행하였다.

Keywords

References

  1. Kim, W. D., 2007, "Fatigue Life Prediction of Composite Patch for Edge Cracked Aluminum Plate," Trans. of the KSAS, Vol. 35, No. 1, pp. 51-57. https://doi.org/10.5139/JKSAS.2007.35.1.052
  2. Damage Tolerance Assessment Handbook, DOT/FAA/CT-93/69.1.
  3. James, L. R., 1984, "Air Force Damage Tolerance Design Philosophy," ASTM STP 842, pp. 134-141.
  4. Military Standard, 1975, "Aircraft Structural Integrity Program, Airplane Requirements," MIL-STD-1530A (USAF).
  5. Baker, A.A. and Jones, R., 2002, "Advances in the Bonded Composite Repair of Metalic Aircraft Structure," Elsevier, Vol. 1, 2.
  6. Jones, R. and Smith, W.R., 1995, "Continued Airworthiness of Composite Repairs to Primary Structures for Military Aircraft," Composite Structures, Vol. 33, pp. 17-26. https://doi.org/10.1016/0263-8223(95)00097-6
  7. Kim W.D., 1999, "Experimental Study on the Center Crack Repair by Composite Patch," Trans. of the KSAS, Vol. 27, No. 8, pp.71-78.
  8. Lee, H.Y., Hwang, M.S. and Kim, J.W., 2002, "Analysis Fatigue Life & Damage Tolerance for Engine Mount," Proceeding of KSAS, pp.408-411.
  9. Shim, D.S., Hwang, D.Y. and Kim, J.K., 2002, "Prediction of Crack Growth in 2124-T851 Al-Alloy Under Flight-Simulation Loading," Trans. of the KSME(A), Vol. 26, No. 8, pp. 1487-1494. https://doi.org/10.3795/KSME-A.2002.26.8.1487
  10. CATIA V5, Users manual
  11. ABAQUS 6.7 Users manual
  12. HyperMesh 8.0 User manual
  13. www.matweb.com
  14. SwRI Report, 1996, "F-5 FMS Durability and Damage Tolerance Update Revised Final DADTA Report - F-5E/F Republic of Korea Air Force," SwRI 06-4222.
  15. NASGRO. 6.0, 2009, Reference manual.
  16. Willenborg, J., Engle, R.M. and Wood. H.A., 1971, "A Crack Growth Retardation Model Using an Effective Stress Concept," AFFDL-TM-71-1- FBR

Cited by

  1. Stress Spectrum Algorithm Development for Fatigue Crack Growth Analysis and Experiment for Aircraft Wing Structure vol.39, pp.12, 2015, https://doi.org/10.3795/KSME-A.2015.39.12.1281