DOI QR코드

DOI QR Code

이중벽관 증기발생기의 설계개념 기술개발

Design Concept and Technology Development of a Double-Wall-Tube Steam Generator

  • 남호윤 (한국원자력연구원 고속로기술개발부) ;
  • 최병해 (한국원자력연구원 고속로기술개발부) ;
  • 김종범 (한국원자력연구원 고속로기술개발부)
  • Nam, Ho-Yun (Div. of Fast Reactor Development, Korea Atomic Energy Research) ;
  • Choi, Byoung-Hae (Div. of Fast Reactor Development, Korea Atomic Energy Research) ;
  • Kim, Jong-Bum (Div. of Fast Reactor Development, Korea Atomic Energy Research)
  • 투고 : 2010.05.11
  • 심사 : 2010.07.20
  • 발행 : 2010.09.01

초록

소듐을 냉각재로 사용하는 고속로의 증기발생기에서는 소듐과 물의 화학적 반응을 최소화하는 것이 중요한 문제이다. 소듐과 물의 반응 가능성을 줄여 증기발생기의 신뢰성을 향상시키기 위한 한가지 방안으로 이중벽관을 전열관으로 사용하는 증기발생기를 개발하고 있다. 이 증기발생기에서 중요한 현안은 이중벽관에서의 열전달 성능을 향상시키는 문제와 원자로 운전 중에 소듐과 물 반응사고가 일어나기 전에 전열관의 파손을 감지하는 기술을 개발하는 것이다. 이 논문에서는 이 현안을 극복할 수 있는 방안을 제시하였고, 이 기술을 활용하여 증기발생기의 개념을 설계하였다. 또한 이 개념에 적용되는 이중벽관을 설계 및 예비 제작하여 기계적 시험을 수행하였다.

The possibility of a sodium-water reaction occurring in a conventional single-wall-tube steam generator in an SFR is a major problem. To improve the reliability of a steam generator, a double-wall-tube steam generator that can reduce the possibility of the occurrence of a sodium-water reaction is being developed. Current developments are focusing on improving the heat-transfer capability of a double-wall tube; further, the development of a leak-detection method to detect the occurrence of a sodium-water reaction during the reactor operation is also underway. In this study, new concepts, which will solve the above-mentioned problems, have been developed. Accordingly, a double-wall tube has been designed, fabricated, and mechanically tested for the purpose.

키워드

참고문헌

  1. Nam, Ho-Yun, B., Kim, J. and Kim, B., 2007, Current Status on the Development of a Double Wall Tube Steam Generator, KAERI/AR-788/2007, KAERI Report.
  2. Takasshi, M, Inoue, A. and Aritomi, M., 1988, Gas Entrainment at Free Surface of Liquid, (II): Onset Conditions of Votex-Induced Entrainment, J. of Nuc. Sci. & Tech., 25(3), pp.245-253. https://doi.org/10.3327/jnst.25.245
  3. Smith, F. A., 1967, Sodium Reactor Intermediate Heat Exchangers and Steam Generators - A Review, Symposium of Montana Idaho Section of ASME.
  4. Brinkman, C. R. and Katcher, M., 1979, Materials Technology for LMFBR Steam Generator, Metal Progress, pp. 55-61.
  5. Sessions, C.E., Uber, C.F., 1981, Steam Generator Tubing Development for Commercial Fast Breeder Reactors, Nuclear Technology, Vol. 55, pp. 280-288. https://doi.org/10.13182/NT55-288
  6. Srinivasan, M.G., France, D.M., 1985, Nonuniqueness in Steady-State Heat Transfer in Prestressed Duplex Tubes - Analysis and Case History, J. of Applied Mechanics, Vol. 52, pp. 257-262. https://doi.org/10.1115/1.3169037
  7. Bushman, H.W., Penney, H., Quilici, M.D., Radtke, W.H., 1981, Operating Experience of the EBR-II Steam Generating System, ASME paper, 81-JPGCNE- 4.
  8. Sessions, C.E., Reynolds, S.D., Hebbar, J.F., Lewis, J.F., Kiefer, J.H., 1981, Materials Development for a Fast Breeder Reactor Steam Generator Concept, Nuclear Technology, Vol. 55, pp. 270-279. https://doi.org/10.13182/NT55-270
  9. Kisohara, N., Nakai, S., Tanabe, H., Kubota, S., Sakakibara, Y., Inoue, M., Kashiwakura, J., Motooka, N., Yano, K., Omata, I., 1991, Feasibility Study on Double-Wall-Tube Type Primary Steam Generator, FR91, Proc. of Int. Fast Reactors and Related Fuel Cycles, Kyoto, Japan, p2.7.
  10. Cho, S.M., Seltzer, A.H., 1989, Thermal Hydraulic Characteristics of a Double-Walled Tube Advanced Nuclear Steam Generator, Heat Transfer Engineering, Vol. 10(3), pp. 25-35. https://doi.org/10.1080/01457638908939705
  11. Hishira. M., Kubo, S., Konomura, M. and Toda, M., 2007, Progress on the Plant Design Concept of Sodium Cooled Fast Reactor, J. of Nucl. Sci. and Tech., Vol. 44(3), pp. 303-308. https://doi.org/10.3327/jnst.44.303
  12. Kashowakura, J., Tashi, Y., Nagata, S., Fujii, T., Morita, T., Fujii-E, Y., 1991, Study of a Plant Without an Intermediate System: Study of the Helically Coiled Double Wall Tube Steam Generator with Fluid Head Structure, FR91, Proc. of Int. Fast Reactors and Related Fuel Cycles, Kyoto, Japan, p2.18.
  13. Dawson, B. E., 1979, Preliminary Design: Duplex Tube Low-Pressure Saturated Steam Generator for Large LNFBR Plant, EPRI NP-1219.
  14. Kurome, K., Kawamura, M., Enuma, Y., Tsujita, Y., Sato, M., Futagami, S., Hayafune, H., 2009, Steam Generator with Straight Double-Walled Tube: Development of Fabrication Technologies of Main Structuree Made of High Chrome Steel-Made, Proc. of Int. Fast Reactors and Related Fuel Cycles, Kyoto, Japan.
  15. Nam, H., Choi, B., Kim, J., Kim, B., 2009, Steam Generator for Sodium Cooled Fast Reactor, Heat Transfer Tubes Thereof, and Leak Detection Unit for Heat Transfer Thereof, USA Patent Application No.: US 12/413,416
  16. Nam, H., Choi, B., Kim, J., Kim, B., 2009, Steam Generator for Sodium Cooled Fast Reactor, Heat Transfer Tubes Thereof, and Leak Detection Unit for Heat Transfer Thereof Korea Patent Application No.: 10- 2008-009110
  17. Nam, H., Choi, B., Kim, J., Kim, B., 2009, Steam Generator for Sodium Cooled Fast Reactor, Heat Transfer Tubes Thereof, and Leak Detection Unit for Heat Transfer Thereof, JAPAN Patent Application No.: 2009-58954
  18. Nam, H., Choi, B., Kim, J., Kim, B., 2009, Steam Generator for Sodium Cooled Fast Reactor, Heat Transfer Tubes Thereof, and Leak Detection Unit for Heat Transfer Thereof, EU Patent Application No.: EP 09 156 341.1.
  19. Hiroshi, H., Naomichi, K., Tsuneo, T., Kenji, M., Hiroshi, T., Katsuhiro, H., Shigeru, M., 1987, Feasibility Study of Primary Sodium_Heated Steam Generator, Procedings of the Int. Conf. on Fast Breeder Systems, Sept 13-17, Richard, USA.

피인용 문헌

  1. Concept Development and Review of Current Technical Issues for SFR Steam Generator vol.35, pp.9, 2011, https://doi.org/10.3795/KSME-A.2011.35.9.1083
  2. Comparison of the Friction-Loss Coefficient for the Gap of Two Contact Surfaces and a Crack vol.35, pp.10, 2011, https://doi.org/10.3795/KSME-B.2011.35.10.1075