Association rule ranking function by decreased lift influence

향상도 영향 감소화에 의한 연관성 순위결정함수

  • Received : 2010.03.15
  • Accepted : 2010.04.28
  • Published : 2010.05.31

Abstract

Data mining is the method to find useful information for large amounts of data in database, and one of the important goals is to search and decide the association for several variables. The task of association rule mining is to find certain association relationships among a set of data items in a database. There are three primary measures for association rule, support and confidence and lift. In this paper we developed a association rule ranking function by decreased lift influence to generate association rule for items satisfying at least one of three criteria. We compared our function with the functions suggested by Park (2010), and Wu et al. (2004) using some numerical examples. As the result, we knew that our decision function was better than the function of Park's and Wu's functions because our function had a value between -1 and 1regardless of the range for three association thresholds. Our function had the value of 1 if all of three association measures were greater than their thresholds and had the value of -1 if all of three measures were smaller than the thresholds.

데이터 마이닝은 대규모의 데이터베이스에 내재되어 있는 유용한 정보를 찾아내는 과정이며, 중요한 목표 중의 하나는 여러 변수들 간의 관계를 발견하고 결정하는 것이다. 이를 위해 필요한 기법인 연관성 규칙 마이닝은 각 항목들 간의 관련성을 찾아내는 데 활용되며, 지지도, 신뢰도, 향상도 등의 연관성 측도를 기반으로 두 항목간의 관계를 수치화함으로써 의미 있는 규칙을 찾아낸다. 본 논문에서는 3개의 연관기준값들 중 어느 하나라도 기준 이상이 되는 규칙의 순위를 매겨 필요한 연관성 규칙만을 생성할 수 있는 연관성 순위 결정 함수를 개발하는데 기존의 연구 결과를 개선하기 위해 특정 연관 기준값의 영향을 더 많이 받지 않도록 3개 연관기준값의 범위를 조정한 연관성 순위 결정 함수를 제안하고자 한다. 모의실험을 해본 결과, 대체적으로 본 논문에서 제안한 함수는 연관성 측도들과 최저 연관기준값들간의 차이를 잘 반영하고 있으며, 최저 연관성 기준값들의 범위와는 관계없이 항상 -1과 1 사이의 값을 가지며, 최저 연관기준값을 모두 충족하게 되면 1의 값을 가지며, 3개 모두 충족되지 않으면 -1의 값을 갖게 된다는 사실을 알 수 있었다.

Keywords

References

  1. Agrawal, R., Imielinski, R. and Swami, A. (1993). Mining association rules between sets of items in large databases. Proceedings of the ACM SIGMOD Conference on Management of Data, 207-216.
  2. Agrawal, R. and Srikant, R. (1994). Fast algorithms for mining association rules. Proceedings of the 20th VLDB Conference, 487-499.
  3. Bayardo, R. J. (1998). Efficiently mining long patterns from databases. Proceedings of ACM SIGMOD Conference on Management of Data, 85-93.
  4. Cai, C. H., Fu, A. W. C., Cheng, C. H. and Kwong, W. W. (1998). Mining association rules with weighted items. Proceedings of International Database Engineering and Applications Symposium, 68-77.
  5. Cho, K. H. and Park, H. C. (2007). Association rule mining by environmental data fusion. Journal of the Korean Data & Information Science Society, 18, 279-287.
  6. Cho, K. H. and Park, H. C. (2008). A study of association rule application using self-organizing map for fused data. Journal of the Korean Data & Information Science Society, 19, 95-104.
  7. Choi, J. H. and Park, H. C. (2008). Comparative study of quantitative data binning methods in association rule. Journal of the Korean Data & Information Science Society, 19, 903-910.
  8. Han, J. and Fu, Y. (1999). Mining multiple-level association rules in large databases. IEEE Transactions on Knowledge and Data Engineering, 11, 68-77.
  9. Han, J., Pei, J. and Yin, Y. (2000). Mining frequent patterns without candidate generation. Proceedings of ACM SIGMOD Conference on Management of Data, 1-12.
  10. Liu, B., Hsu, W. and Ma, Y. (1999). Mining association rules with multiple minimum supports. Proceedings of the 5th International Conference on Knowledge Discovery and Data Mining, 337-241.
  11. Park, H. C. (2008). The proposition of conditionally pure confidence in association rule mining. Journal of the Korean Data & Information Science Society, 19, 1141-1151.
  12. Park, H. C. (2010). Development of associative rank decision function using basic association rule thresholds. Journal of the Korean Data Analysis Society, 12, unpublished.
  13. Park, J. S., Chen, M. S. and Philip, S. Y. (1995). An effective hash-based algorithms for mining association rules. Proceedings of ACM SIGMOD Conference on Management of Data, 175-186.
  14. Pasquier, N., Bastide, Y., Taouil, R. and Lakhal, L. (1999). Discovering frequent closed itemsets for association rules. Proceedings of the 7th International Conference on Database Theory, 398-416.
  15. Pei, J., Han, J. and Mao, R. (2000). CLOSET: An efficient algorithm for mining frequent closed itemsets. Proceedings of ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery, 21-30.
  16. Srikant, R. and Agrawal, R. (1995). Mining generalized association rules. Proceedings of the 21st VLDB Conference, 407-419.
  17. Toivonen, H. (1996). Sampling large database for association rules. Proceedings of the 22nd VLDB Conference, 134-145.
  18. Wu, X., Zhang, C. and Zhang, S. (2004). Eficient mining of both positive and negative association rules. ACM Transactions on Information Systems, 22, 381-405. https://doi.org/10.1145/1010614.1010616