Flotation for Recycling of a Waste Water Filtered from Molybdenite Tailings

몰리브덴 선광광미 응집여과액 재활용을 위한 부유선별 특성

  • Received : 2010.09.11
  • Accepted : 2010.09.27
  • Published : 2010.09.30

Abstract

Froth flotation using the residual water in the end of flotation process has been performed through controlling of pH. IEP (isoelectric point) of molybdenite and quartz in distilled water was below pH 3 and pH 2.7, respectively and the stabilized range was pH 5~10. In case of a suspension in reusing water, zeta potential of molybdenite decreased to below -10 mV or less at over pH 4 due to residual flocculants. As result of pH control, flotation efficiency in the alkaline conditions was deteriorated by flocculation, resulting from expanded polymer chain, ion bridge of the divalent metal cations ($Ca^{2+}$), and hydrophobic interactions between the nonpolar site of polymer/the hydrophobic areas of the particle surfaces. However, the weak acid conditions (pH 5.5~6) improved the efficiency of flotation as hydrogen ions neutralize polymer chains and then weakened its function. In cleans after rougher flotation, the Mo grade of 52.7% and recovery of 90.1% could be successfully obtained under the conditions of 20 g/t kerosene, 50 g/t AF65, 300 g/t $Na_2SiO_3$, pH 5.5 and 2 cleaning times. Hence, we developed a technique which can continuously supply waste water filtered from tailings into the grinding-rougher-cleaning processes.

동원 NMC 선광장의 부유선별 프로세스를 유지하면서 광미여과액을 순환수로 활용하기 위한 pH 조절 연구를 수행하였다. 휘수연석(molybdenite)과 석영의 등전점(IEP)은 각각 pH 3 이하와 pH 2.7이었으며 안정화(분산)된 영역은 pH 5~10이었다. 순환수 현탁액의 경우, 잔류응집제의 의해 휘수연석의 제타전위는 pH 4 이상에서 -10 mV 이하로 감소하였다. pH 조절에 의한 부유선별 결과, 알칼리 영역에서 폴리머 사슬의 신장 및 확장, 칼슘 양이온($Ca^{2+}$)의 가교(ion bridge), 그리고 일부 무극성 폴리머/소수성 입자의 상호작용에 의한 응집 현상으로 부선효율이 급격히 저하되었다. 반면 약산성 영역(pH 5.5~6)은 수소이온에 의해 음이온성 폴리머가 중화되고 고분자 사슬의 기능이 약화됨에 따라 부선효율이 향상되었다. 조선부선 이후 정선부선의 최적조건인 pH 5.5, 포수제(kerosene) 20 g/t, 기포제(AF65) 50 g/t, 억제제($Na_2SiO_3$) 300 g/t, 정선횟수 2회에서 Mo 품위와 회수율이 각각 52.7%와 90.1%인 최종 정광을 얻어 광미여과액을 분쇄-조선-정선 공정에 지속적으로 재활용할 수 있는 기술을 개발하였다.

Keywords

References

  1. 박철현, 전호석, 김병곤, 김형석, 한오형 (2009) 동원 NMC 몰리브덴광의 부유선별 특성. 한국지구시스템공학회지, 46, 754-760.
  2. 전호석 외 9인 (2010) 몰리브덴 및 철광 개발을 위한 고도선별 공정개발: 1단계보고서. 지식경제부/한국지질자원연구원.
  3. Arbiter, N., Fujii, Y., Hansen, B., and Raja, A. (1975) Surface properties of hydrophobic solids. AICHE Symp. Ser., 71, 176-182.
  4. Chander, S. and Fuerstenau, D.W. (1972) On the natural floatability of molybdenite. Trans. SME, 252, 62-69.
  5. Ersoy, B. (2005) Effect of pH and polymer charge density on settling rate and turbidity of natural stone suspensions. Int. J. Miner. Process., 75, 207-216. https://doi.org/10.1016/j.minpro.2004.08.011
  6. Friend, J.P. and Kitchener, J.A. (1973) Some physicochemical aspects of the separation of finely-divided minerals by selective flocculation. Chem. Eng. Sci., 28, 1071-1080. https://doi.org/10.1016/0009-2509(73)80010-7
  7. Gregory, J. (1989) Fundamental of flocculation. Crit. Rev. Environ. Control, 19, 185-230. https://doi.org/10.1080/10643388909388365
  8. Gupta, C.K. (1992) Ectractive metallurgy of molybdenum. CRC press, Bombay, India, 1-404.
  9. Healy, T.W. (1961) Flocculation -dispersion behavior of quartz in the presence of a polyacrylmide flocculant. J. Colloid. Sci., 16, 609-617. https://doi.org/10.1016/0095-8522(61)90047-2
  10. Hogg, R. (2000). Flocculation and dewatering. Int. J. Miner. Process., 58, 223-236. https://doi.org/10.1016/S0301-7516(99)00023-X
  11. Taylor, L.T., Morris, G.E., Self, P.G., and Smart, R.St.C. (2002) Kinetics of Adsorption of High Molecular Weight Anionic Polyacrylamideonto Kaolinite. J. Colloid Interface Sci., 250, 28-36. https://doi.org/10.1006/jcis.2002.8341
  12. Pefferkorn, E. (1999). Polyacrylamide at solid/liquid interfaces. J. Colloid Interface Sci., 216, 197-220. https://doi.org/10.1006/jcis.1999.6312
  13. Raghavan, S. and Hsu, L.L. (1984) Factors affecting the flotation recovery of molybdenite from porphyry copper ores. Int. J. Miner. Process., 12, 45-162.
  14. Smit, F.J. and Bhasina, K. (1985) Relationship of petroleum hydrocarbon characteristics and molybdenite flotation. Int. J. Miner. Process., 15, 19-40. https://doi.org/10.1016/0301-7516(85)90021-3
  15. Stutzman, Th. and Siffert, B. (1977). Contribution to the adsorption mechanism of acetamide and polyacrylamide on to clays. Clay Clay Minerals, 25, 392-406. https://doi.org/10.1346/CCMN.1977.0250604
  16. Werneke, M.F. (1979) Application of synthetic polymers in coal preparation. Soc. Min. Eng. AIME, 79-106, 1-11.
  17. Ateyok, G. (1988) Adsorption of polymers. Bull. Tech. Univ. Istanb., 41, 13-32.
  18. Yarar, B. and Kitchener, J.A. (1971) Selective flocculation of minerals: (1) basic principles, (2) experimental investigation of quartz-calcite, and galena. Trans. IMM 79, C23-C33.