DOI QR코드

DOI QR Code

Evaluation of Pess Formability for Ti-6Al-4V Sheet at Elevated Temperature

Ti-합금판재(Ti-6Al-4V)의 고온 성형성 평가

  • 박진기 (경북대학교 기계공학부) ;
  • 박노광 (재료 연구소 특수 합금 연구부) ;
  • 김영석 (경북대학교 기계공학부)
  • Received : 2010.02.18
  • Accepted : 2010.04.15
  • Published : 2010.07.01

Abstract

Titanium alloy sheets have excellent specific strength and corrosion resistance as well as good performance at high temperature. Recently, titanium alloys are widely employed not only for aerospace parts but also for bio prothesis and motorcycle. However, the database is insufficient in the titanium alloy for press forming process. In this study, the effect of temperature on the forming limit diagram was investigated for Ti-6Al-4V titanium alloy sheet through the Hecker‘s punch stretching test at elevated temperature. Experimental results obtained in this study can provide a database for the development of press forming process at elevated temperature of Ti-6Al-4V titanium alloy sheet. From the experimental studies it can be concluded that the formability of Ti-6Al-4V titanium alloy sheet is governed by the ductile failure for the testing temperature. The formability of Ti-6Al-4V titanium alloy sheet at $700^{\circ}C$ increases about 7 times compared with that at room temperature.

Keywords

References

  1. M. J. Donachie, Jr., 1988, Titanium: A Technical Guide, ASM Int., Metals Park, OH.
  2. P. G. Partidge, 1967, The Crystallography and Deformation mode of HCP metals, Int. Mat. Rev., Vol. 12, pp. 169-164. https://doi.org/10.1179/imr.1967.12.1.169
  3. D. G. Lee, Y. H. Lee, C. S. Lee, and S. H. Lee, 2004, Effects of volume fraction of tempered martensite on dynamic deformation properties of Ti-6Al-4V alloy having bimodal microsture, J. Korean Inst. Met. Mater., Vol. 42, pp. 455-463.
  4. G. Lutjering, 1998, Influence of processing on microstructure and mechanical properties of $({\alpha}+{\beta})$ titanium alloys, Mater. Sci. Eng. A, Vol. 243, pp. 32-45. https://doi.org/10.1016/S0921-5093(97)00778-8
  5. G. K. Turnbull, 1982, Titanium and Titanium alloys-Source book, ASM International, Metal Park, OH, pp. 265-269.
  6. R. R. Boyer, G. E. Welsch, and E. W. Collings, 1994, Materials Properties Handbook, ASM International, Metal Park, OH. P. 488.
  7. M. Vanderhasten, L. Rabet, and B. Verlinden, 2008, Ti-6Al-4V: deformation map and modelisation of tensile behavior, Mater. Design, Vol. 29, pp.1090-1098. https://doi.org/10.1016/j.matdes.2007.06.005
  8. A. S. Khan, R. Kazmi, and B. Farrokh, 2007, Multiaxial and non-proporional loading responses, anisotropy and modeling of Ti-6Al-4V titanium alloy over wide ranges of strain rates and temperatures, Int. J. Plast., Vol. 23, pp. 931-950. https://doi.org/10.1016/j.ijplas.2006.08.006
  9. S. B. Leen, M. A. Krohn, and T. H. Hyde, 2008, Failure prediction for titanium alloys using a superplastic forming limit diagram approach, Mat-wiss. U. werkstofftech, Vol. 38, pp. 327-331.
  10. R. Hill, 1983, The mathematical theory of plasticity, Oxford University Press, New York.
  11. Z. Marciniak and K. Kuczynski, 1967, Limit strains in the process of stretch-forming sheet metal, Int. J. Mech. Sci., Vol. 9, pp. 609-612. https://doi.org/10.1016/0020-7403(67)90066-5
  12. H. Y. Kim, S. C. Choi, H.S. Lee, H. J. Kim, and K. T. Lee, 2007, Experiment for forming limit diagram and springback characteristics of AZ31B magnesium alloy sheet at elevated temperature, Trans. Mat. Processing, Vol. 16, pp. 364-369. https://doi.org/10.5228/KSPP.2007.16.5.364
  13. H. S. Son and Y. S. Kim, 2003, Prediction of forming limits for anisotropic sheets containing prolate ellipsoidal voids, Int. J. Mech. Sci., Vol. 45, pp. 1625-1643. https://doi.org/10.1016/j.ijmecsci.2003.10.011
  14. S. S. Hecker, 1972, A simple forming limit curve technique and results on aluminum alloys, Proc. 7th Biennial Congress Int. Deep Drawing Research Group, Amsterdam, pp. 51-58
  15. A. S. Korhonen and T. Manninen, 2008, Forming and fracture limits of austenitic stainless steel sheets, Mater. Sci. Eng. A, Vol. 488, pp. 157-166 https://doi.org/10.1016/j.msea.2007.11.006
  16. L. Zhang, Y. J. Yin, Y. Q. Chen, and M.-D. Xue, 2003, Damage and forming limit analysis in porous ductile metals at room or elevated temperature, Mater. Sci. Tech., Vol. 19, pp. 1355-1360. https://doi.org/10.1179/026708303225006097
  17. M. G. Cockroft and D. J. Latham, 1968, Ductility and the workability of metals. J. Inst. Met., Vol. 96, pp. 33-39.
  18. J. G. Park, J. H. Kim, N. K. Park, and Y. S. Kim, 2009, Plastic deformation characteristic of titanium alloy sheet (Ti-6Al-4V) at warm temperature, 2009 Spring Conf. Trans. Mat. Processing, pp. 152-157.
  19. R. W. Logan and W. F. Hosford, 1980, Upperbound anisotropic yield locus calculations assuming <111> pencil glide, Int. J. Mech. Sci., Vol. 22, pp. 419-430. https://doi.org/10.1016/0020-7403(80)90011-9

Cited by

  1. The Effect of Temperature on Springback of AZ31, Ti-GR2 during V-bending with Focused Heating using Near-infrared Radiation vol.23, pp.8, 2014, https://doi.org/10.5228/KSTP.2014.23.8.469