DOI QR코드

DOI QR Code

기상/액상 계면에서의 SF6 하이드레이트 필름 성장거동 연구

Characteristics of sulfur hexafluoride hydrate film growth at the vapor/liquid interface

  • 김수민 (부산대학교 재료공학부) ;
  • 이현주 (부산대학교 재료공학부) ;
  • 이보람 (포항공과대학교 화학공학과) ;
  • 이윤석 (부산대학교 재료공학부) ;
  • 이은경 (부산대학교 재료공학부) ;
  • 이주동 (한국생산기술 연구원 동남권기술지원본부) ;
  • 김양도 (부산대학교 재료공학부)
  • Kim, Soo-Min (School of Materials Science and Engineering, Pusan National University) ;
  • Lee, Hyun-Ju (School of Materials Science and Engineering, Pusan National University) ;
  • Lee, Bo-Ram (Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH)) ;
  • Lee, Yoon-Seok (School of Materials Science and Engineering, Pusan National University) ;
  • Lee, Eun-Kyung (School of Materials Science and Engineering, Pusan National University) ;
  • Lee, Ju-Dong (Dongnam Technology Service Division, Korea Institute of Industrial Technology) ;
  • Kim, Yang-Do (School of Materials Science and Engineering, Pusan National University)
  • 투고 : 2010.03.03
  • 심사 : 2010.04.02
  • 발행 : 2010.04.30

초록

$SF_6$ 가스는 아크방지능력과 절연 특성이 탁월하기 때문에 단열, 세척, 차폐등과 같은 여러 공업적인 영역에서 널리 사용되고 있다. 그러나 $SF_6$의 지구온난화지수는 $CO_2$의 23,900배에 달하며 3,200년 이상 공기중에 잔존한다. 이러한 이유로 하이드레이트 형성 원리를 이용하여 복합 가스에서 $SF_6$를 분리해 내는 방법이 기술적, 경제적인 면에 영향을 끼칠 것이다. 본 연구에서 $SF_6$ 하이드레이트 결정의 형성과 성장에 대한 이해를 위하여 형태학적 분석을 수행하였다. $SF_6$ 하이드레이트 필름은 용액과 기상의 계면에서 먼저 생성되었고, 이후에 수지상 가지의 형태로 성장하는 것이 관찰 되었다. 수지상 성장 결정은 기상의 방향으로 성장하였는데 이것은 객체 분자의 농도 차이에 근거한 것으로 사료된다. 본 연구에서는 기/액 계면에서의 핵생성, 유동, 성장과 같은 $SF_6$ 하이드레이트 결정의 형태학적 특성에 대하여 기술하였다.

$SF_6$ gas has been widely used in many industrial fields as insulating, cleaning and covering gases due to its outstanding arc-extinguishing and insulating properties. However, global warming potential of $SF_6$ gas is 23,900 times more than that of $CO_2$ and it remains in the air during 3,200 years. For these reason, technological and economical effects could be expected for the separation of $SF_6$ from gas mixtures by hydrate forming process. In this study, we carried out morphological studies for the $SF_6$ hydrate crystal to understand its formation and growth mechanisms. $SF_6$ hydrate film was initially formed at the interfacial boundary between gas and liquid regions, and then subsequent dendrite crystals growth was observed. The dendrite crystals grew to the direction of gas region probably due to the guest gas concentration gradient. The detailed growth characteristics of $SF_6$ hydrate crystals such as nucleation, migration, growth and interference were discussed in this study.

키워드

참고문헌

  1. E.D. Sloan, Clathrate Hydrates of Natural Gases 2nd ed., Marcel Dekker, New York (1998).
  2. H. Ganji, M. Manteghian, K. Sadaghiani Zadeh, M.R. Omidkhah and H. Rahii Mofrad, "Effect of different surfactants on methane hydrate formation rate, stability and storage capacity", Fuel. 86 (2007) 411.
  3. M.A. Clarke and P.R. Bisnoi, "Measuring and modeling the rate of decomposition of gas hydrates formed mixtures of methane and ethane", Chem Eng Sci. 56 (2001) 4715. https://doi.org/10.1016/S0009-2509(01)00135-X
  4. P. Englezos and J.D. Lee, "Gas hydrate: A cleaner source of energy and opportunity for innovative technologies", Korean J. Chem. Eng. 22(5) (2005) 671. https://doi.org/10.1007/BF02705781
  5. H. Lee, J. Lee, D.Y. Kim, J. Park, Y.-T. Seo, H, Zeng, I.L. Moudrakovski, C.I. Ratcliffe and J.A. Ripmeester, "Tuning clathrate hydrates for hydrogen storage", Nature 434(7034) (2005) 743. https://doi.org/10.1038/nature03457
  6. J.W. Lee, M.-K. Chun, K.M. Lee, Y.J. Kim and H. Lee, "Phase equilibria and kinetic behaviour of $CO_{2}$ hydrate in electrolyte and porous media solutions: application to ocean sequestration of $CO_{2}$", Korean J. Chem. Eng. 19(4) (2002) 673. https://doi.org/10.1007/BF02699316
  7. O.R. West, C. Tsouris, S. Lee, S.D. McCallum and L. Liang, "Negatively buoyant $CO_{2}$-hydrate composite for ocean carbon sequestration", AIChE J. 49(1) (2003) 283. https://doi.org/10.1002/aic.690490127
  8. Y.-T. Seo and H. Lee, "Structure and guest distribution of the mixed carbon dioxide and nitrogen hydrates as revealed by X-ray diffraction and $C^{13}$ NMR spectroscopy", J. Phys. Chem. B 108(2) (2004) 530. https://doi.org/10.1021/jp0351371
  9. Y.-T. Seo, I.L. Moudrakovski, J.A. Ripmeester, J.-W. Lee and H. Lee, "Efficient recovery of $CO_{2}$ from flue gas by clathrate hydrate formation in porous silica gels", Environmental Science and Technology 39(7) (2005) 2315. https://doi.org/10.1021/es049269z
  10. K. Sugahara, M. Yoshida, T. Sugahara and K. Ohgake, "Thermodynamic and raman spectroscopic studies on pressure-induced structural transition of $SF_{6}$ hydrate", J. Chem. Eng. 51 (2006) 301.
  11. Y.F. Makogon, "Hydrates of natural gas", Penn Well, Tulsa, Oklahoma (1981) Chapter 2.
  12. M. Sugaya and Y.H. Mori, "Behaviour of clathrate hydrate formation at the boundary of liquid water and a fluorocarbon in liquid or vapor state", Chemical Engineering Science 51(13) (1996) 3505. https://doi.org/10.1016/0009-2509(95)00404-1
  13. S. Thomas and R.A. Dawe, "Review of ways to transport natural gas energy from countries which do not need the gas for domestic use", Energy 28(14) (2003) 1461. https://doi.org/10.1016/S0360-5442(03)00124-5
  14. J.D. Lee, M. Song, R. Susilo and P. Englezos, "Dynamics of methane-propane clathrate hydrate crystal growth from liquid water with or without the presence of n-heptane", Crystal growth & Design 6(6) (2006) 1428. https://doi.org/10.1021/cg0600647
  15. G.A. Jeffrey, "Inclusion compounds", Atwood, J.L. Davies, J.E.D. and MacNichol, D.D., eds., Academic Press (1984) 135.
  16. Yasuhiko H. Mori and Takaaki Mochizuki, "Mass transport across clathrate hydrate films-a capillary permeation model", Chemical Engineering Science 52(20) (1997) 3613. https://doi.org/10.1016/S0009-2509(97)00169-3
  17. I. Aya, K. Yamane and N. Yamada, "Stability of clathrate-hydrate of carbon dioxide in highly pressurized water", HTD-Vol. 215, Am. Soc. Mech. Engrs, New York, N.Y. (1992) 17.

피인용 문헌

  1. hydrate vol.23, pp.2, 2013, https://doi.org/10.6111/JKCGCT.2013.23.2.93