DOI QR코드

DOI QR Code

Determination of stoichiometric Ca/P ratio in biphasic calcium phosphates using X-ray diffraction analysis

X-선 회절분석을 이용한 biphasic calcium phosphate 분말의 화학양론적 Ca/P 비율 확인

  • Song, Yong-Keun (School of Materials Science Engineering, Pusan National University) ;
  • Kim, Dong-Hyun (School of Materials Science Engineering, Pusan National University) ;
  • Kim, Tae-Wan (School of Materials Science Engineering, Pusan National University) ;
  • Kim, Yang-Do (School of Materials Science Engineering, Pusan National University) ;
  • Park, Hong-Chae (School of Materials Science Engineering, Pusan National University) ;
  • Yoon, Seog-Young (School of Materials Science Engineering, Pusan National University)
  • Received : 2010.03.10
  • Accepted : 2010.04.02
  • Published : 2010.04.30

Abstract

The calcium to phosphate ratio (Ca/P) in biphasic calcium phosphates powders using X-ray diffraction analysis (XRD) was characterized. The BCP powders with various stoichiometric Ca/P molar ratio were synthesized with coprecipitation process and calcination. Compositions of the powders with Ca/P molar ratio between 1.5 and 1.67 were subjected to starting Ca/P molar ratio, pH = 10, and thermal treatment up to $900^{\circ}C$. The structural, morphological and chemical characterizations for BCP powders with stoichiometric Ca/P ratio were carried out with scanning electron microscope (SEM) and inductively coupled plasma atomic emission spectroscopy (ICP-AES) and a phase quantification was investigated by XRD. The solubility of HAp, $\beta$-TCP, and BCP powders was tested in the phosphate buffer solution (PBS) at $36.5^{\circ}C$ and pH = 7.4.

X-선 회절 분석방법을 통해 biphasic calcium phosphate(BCP) 분말의 Ca/P 몰 비율을 확인하고 특성을 평가하였다. 다양한 화학 양론적인 Ca/P 몰 비율을 가지는 BCP 분말은 공침반응 및 하소과정을 통해 합성하였다. 1.5에서 1.67의 Ca/P 몰 비율을 가지는 분말의 조성은 초기 출발물질의 Ca/P 몰 비율, pH 10에서의 공침 과정 및$900^{\circ}C$ 열처리에 의해 정해졌다. 화학 양론적 Ca/P 몰 비율을 가지는 BCP 분말의 구조, 형상 및 화학적 특성평가는 XRD의 상-정량 확인 분석을 바탕으로 주사전자현미경 및 유도 결합 플라즈마 분광분석기와 함께 수행 하였다. BCP 분말의 용해도는 $36.5^{\circ}C$ 및 pH 7.4 의 phosphate buffer solution(PBS)에서 특성평가 하였다.

Keywords

References

  1. K.-B. Park, J.-W. Park, H.-U. Ahn, D.-J. Yang, S.-K. Choi, I.-S. Jang, S.-I. Yeo and J.-Y. Suh, "Comparative study on the physicochemical properties and cytocom patibility of microporous biphasic calcium phosphate ceramics as a bone graft substitute", Journal of Periodontal & Implant Science 36 (2006) 797.
  2. R.W. Bucholz, A. Carlton and R.E. Holmes, "Hydroxyapatite and tricalcium phosphate bone graft substitutes", Orthop. Clic. North Am. 18 (1987) 323.
  3. W. Suchanek and M. Yoshimura, "Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants", J. Mater. Res. 13 (1998) 94. https://doi.org/10.1557/JMR.1998.0015
  4. Y. Ota, T. Iwashita, T. Kasuga, Y. Abe and A. Seki, "Bone formation following implantation of fibrous compounds $(\beta-Ca(PO_{3})_{2}, CaCO_{3}(Aragonite))$ into bone marrow", J. Mater. Sci. 12 (2002) 895.
  5. J.H. Kim, Y.M. Park, Y.Y. Yang, S.Y. Yoon and H.C. Park, "Microstructural develpment in synthetic hydroxyapatite", J. Kor. Ceram. Soc. 41 (2004) 289. https://doi.org/10.4191/KCERS.2004.41.4.289
  6. D.J. Baek, T.Y. Yang, Y.B. Lee, S.Y. Yoon and H.C. Park, "Fabrication of hydroxyapatite whiskers by hydrolysis of $\alpha$-TCP", J. Kor. Ceram. Soc. 40 (2003) 608. https://doi.org/10.4191/KCERS.2003.40.6.608
  7. S.H. Kwon, Y.K. Jun, S.H. Hong and H.E. Kim, "Synthesis and dissolution behavior of $\beta$-TCP and HA/$\beta$-TCP composite powders", J. Eur. Ceram. Soc. 23 (2003) 1039. https://doi.org/10.1016/S0955-2219(02)00263-7
  8. I. Manjubala and M. Sivakumar, "In-situ synthesis of biphasic calcium phosphate ceramics using microwave irradiation", Mater. Chem. & Phys. 71 (2001) 272. https://doi.org/10.1016/S0254-0584(01)00293-0
  9. C.K. Hsu, "The preparation of biphasic porous calcium phosphate by the mixture of $Ca(H_{2}PO_{4})_{2}H_{2}O$and $CaCO_{3}$", Mater. Chem. & Phys. 9470 (2002) 1.
  10. Y. Pand, J.A. Huang and C.Y. Shao, "Preparation of $\beta$-TCP with high thermal stability by solid reaction route", J. Mater. Sci. 38 (2003) 1049. https://doi.org/10.1023/A:1022354015226
  11. N. Kivrak and A.C. Tas, "Synthesis of calcium hydroxyapatite-tri calcium phosphate (HA-TCP) composite bioceramic powders and their sintering behavior", J. Am. Ceram. Soc. 81 (1998) 2245.
  12. S.V. Dorozhkin, "Solid-state transformation of a nonstoichiomet ric calcium deficient apatite into the biphasic calcium phosphate", Key Eng. 192-195 (2001) 155-158. https://doi.org/10.4028/www.scientific.net/KEM.192-195.155
  13. M. Benahmed, J.M. Bouler, D. Heymann, O. Gan and G. Daculsi, "Biodegradation of synthetic biphasic calcium phosphate by human monocytes in vitro", Biomaterials 17 (1996) 2173. https://doi.org/10.1016/0142-9612(96)00046-4
  14. R. Xin, Y. Leng, J. Chen and Q. Zhang, "A comparative study of calcium phosphate formation on bioceramics in vitro and in vivo", Biomaterials 26 (2005) 6477. https://doi.org/10.1016/j.biomaterials.2005.04.028
  15. R.Z. LeGeros, "Apatites in biological system", Prog. Crystal Growth Charact. 4 (1981).
  16. R.Z. LeGeros, S. Lin, R. Rohanizadeh, D. Mijares and J.P. LeGeros, "Biphasic Calcium phosphate bioceram-ics:preparation, properties and applications", J. Mater. Sic. 14 (2003) 201.
  17. R.Z. LeGeros, "Calcium phosphates in oral biology and medicine (Monograph in Oral Science) Karger 15 (1991).
  18. S.-H. Kwon, Y.-K. Jun, S.-H. Hong and H.-E. Kim, "Synthesis and dissolution behavior of $\beta$-TCP and HA/$\beta$-TCP composite powders", J. Euro. Ceram. Soc. 23 (2003) 1039. https://doi.org/10.1016/S0955-2219(02)00263-7

Cited by

  1. Biocompatibility of porous hydroxyapatite ceramics prepared from bovine bones vol.22, pp.3, 2012, https://doi.org/10.6111/JKCGCT.2012.22.3.139