Rhodobacter sphaeroides KD131에 의한 유기산 광합성 발효 최적화

손한나*, 김미선*†

*한국에너지기술연구원 바이오에너지연구센터

Optimization of Various Organic Acids on Photo–Fermentative Hydrogen Production using *Rhodobacter sphaeroides* KD131

hanna son*, misun kim*†

*Bioenergy Research Center, Korea Institute of Energy Research, 71–2 Jang-dong Yuseong-gu Daejeon 305–343, Korea

ABSTRACT

Photobiological H₂ production was compared using purple non-sulfur bacteria *Rhodobacter sphaeroides* KD131 in the medium containing various organic acids as the carbon source and electron doner under illumination of 110 W/m² using halogen lamp at 30 °C. The organic acids used were $0 \sim 120$ mM acetate, butyrate, lactate and malate. Initial pH 7.0 and cell concentration 1.0 at 660nm were increased to pH 8 and 4.4~5.1, respectively during 24hrs of photo-fermentation when lactate and malate were used. However, acetate and butyrate increased pH to 9 and cell concentration to $3.2 \sim 3.9$ of malate at the same experimental conditions. Optimum ranges of organic acids concentration and carbon/nitrogen ratio were $30 \sim 60$ mM and $10 \sim 20$, respectively. When malate was used as the substrate, maximum H₂ production 1.1 ml H₂/ml broth, which is equivalent to 1.97 mol H₂/mol malate was observed.

KEY WORDS : *Rhodobacter sphaeroides*(홍색 비유황 세균), Carbon source(탄소원), Substrate degrdation (기질 분해율), C/N ratio(탄소원과 질소원의 비율)

1. 서 론

미생물이 갖는 수소생산 기작은 기질의 종류 및 미생물 고유의 효소계, 광원의 유무에 의해 달라진다. 수소를 생산하는 미생물에는 광합성 세균, 조류, 혐기성세균, 고세균 등으로 구분되며 이 연구에서

⁺Corresponding author : bmmskim@kier.re.kr [접수일 : 2010.11.13 수정일 : 2010.2.2 게재확정일 : 2010.4.20] 주목해야할 균은 광합성세균이다. 광합성세균은 대 사적인 다양성을 나타내어 호기적 및 혐기적 암조 건에서도 모두 성장할 수 있다. 또한 광합성을 할 수 있는 동시에 발효에 의해서도 배양이 가능하다고 알 려져 있다. 이러한 다양성 때문에 기질의 이용 효율 에 차이는 있지만 단당류, 이당류 및 각종 유기산을 모두 배양 기질로 사용할 수 있다. 광합성 세균은 다 시 홍색비유황세균(purple non-sulfur bacteria), 홍

색유황세균(purple sulfur bacteria), 녹색유황세균 (green sulfur bacteria)으로 나눠지며, 이 연구에서 는 홍색비유황세균에 대해 실험하였다. 이 분류의 균 중에서도 R. rubrum과 Rhdospilium paulustris 등은 포도당을 이용하여 피루브산으로 분해하는 해 당작용효소와 pyruvate-formate lyase(PFL), formatehvdrogen lvase(FHL) 복합체를 가지고 있어 수소 를 발생한다. 반면 R. sphaeroides는 PFL과 FHL 유전자를 갖고 있지 않으며, 포도당 보다는 유기산 으로부터 효율적으로 수소를 생산하는 것으로 보고 되고 있다. 이러한 특징 때문에 혐기 발효에서 발생하 는 유기산을 이용하는 후처리로 적합하다¹⁾. 다시 말해 포도당을 이용하는 균이 혐기발효하여 수소와 유기산 을 생산하고, 이유기산을 이용하는 R. sphaeroides로 광합성 발효하여 2차적으로 수소를 발생하는 것이다^{2,3)}. 유기산 중에서도 malate, lactate, butyrate, succinate 가 홍색비유황세균에 의해 잘 분해되어 수소로 전 환되지만, acetate는 비교적 이용도가 낮은 유기산 으로 보고되고 있다.

이 연구에서는 다양한 유기산으로부터 기질 분 해율, 수소생산, 균체성장, carbon/nitrogen ratio를 측정함으로써 *R. sphaeroides* KD131을 이용해 발 효조건을 최적화하였다.

2. 실험 재료 및 방법

2.1 배지 조성

사용한 균주는 통성 혐기성 균주인 *R. sphaeroides* KD131이다. 배양에 사용된 배지 조성은(1L) KH₂PO₄ 2.72g, L-glutamic acid 1.2g, Nitrilotriacetic acid 0.2g, MgCl₂·6H₂O 0.244g, CaCl₂·2H₂O 34mg, FeSO₄· 7H₂O 2mg 이고, Trace elements(EDTA 1.765mg, ZnSO₄·7H₂O 10.95mg, MnSO₄·H₂O 1.54mg, CuSO₄· 5H₂O 0.392mg, Co(NO₃)₂·6H₂O 0.248mg, H₃BO₃ 0.114mg, Na₂MoO₄·2H₂O 0.75mg, FeSO₄·7H₂O 0.5mg), Vitamins(nicotinic acid 1mg, thiaminne·HCl 0.5mg, Biotin 0.01mg)를 사용하였다. 탄소원으로는 acetate, butyrate, lactate, malate가 첨가되었다. 2 N NaOH 로 초기 pH는 7.0-7.3으로 조절하고, 120℃에서 10

Fig. 1 Experimental setting for photofermantation using *Rhodobacter* sphaeroides KD131.

분간 고압멸균 처리하였다.

2.2 배양 조건

R. sphaeroides KD131은 150ml의 serum bottle 배양기에 배지를 50ml 넣은 후, 초기 균체농도가 660nm에서 흡광도 1.0이 되도록 접종하였다. 실리 콘마개와 알루미늄 캡으로 밀폐한 뒤 아르곤 가스 로 10분간 치환하여 혐기조건을 만들어 주었으며, magnetic stirrer로 80-100rpm 교반하였다. 광원으로는 할로겐등을 사용하였고, 광 측정용으로 pyranometer 를 장착한 센서 light meter(LI-COR LI-250A)를 이용하였다. 배양액 앞쪽에는 108-11 W/m²으로 조 사하고, 뒤쪽에는 거울을 세워 반사되는 빛을 최대 한 골고루 받도록 조절하였다. 배양실의 온도는 30℃ 를 유지하였고, 배양기 위쪽에 송풍기를 달아주어 할로겐등에서 발생하여 배양기에 전달되는 열을 제 거시켰다. 이 조건으로 실험장치를 찍은 사진이 Fig. 1 이다.

2.3 분석

배양액의 pH는 pH meter(TOA, model 30G)로 실온에서 측정하였다. 균체농도는 일정한 시간 간 격으로 채취한 발효액을 UV-VIS spectrophotometer(Shimadzu UV-1601)로 파장 660nm에서 흡 광도를 측정하였다. 발효액을 일정시간 간격으로 채 취하여 9,000rpm에서 3분간 원심분리하고 균체와

Fig. 2 Acetate and butyrate using the effect of cell growth and pH by *Rhodobacter sphaeroides* KD131 0 mM(\bullet), 30 mM(\circ), 60 mM(\bullet), 120 mM(\diamond).

상등액을 분리한 후 상등액을 0.2µm filter로 여과한 후 유기산 분석에 사용하였다. 시료 20µℓ를 주입하 고, 0.01M H₂SO₄를 이동상으로 하여 flow rate 0.6 µℓ/min으로 용출하였다. 유기산 분석은 Aminex HPX-B7H를 장착한 HPLC(Shimadzu LC-10AT)를 사용 하여 30℃에서 분석하였으며 UV detector를 이용 하여 파장 210nm에서 측정하였다.

2.4 수소 함량

배양 중 발생하는 가스양은 매 12시간 마다 30ml syringe를 이용하여 배양기 head space로부터 포집 하고 측정하였다. 수소함량은 serum bottle내의 head space 가스를 gas-tight microsyringe로 100µℓ채취 하여 gas chromatography(Shimazu 14-B)로 분석하 였다. Molecular sieve 5A(Supelco Inc.)를 충진물질 로 사용하였고, thermal conductivity detector(TCD) 로 분석하였다. 수소가스 정량을 위한 GC조건은 column 온도 80℃, injector 온도 100℃, detector 온 도 120℃이다. carrier 가스는 아르곤으로 flow rate 60ml/min을 유지하였다.

3. 실험결과 및 고찰

3.1 유기산이 균체성장 및 pH에 주는 영향

배지에 다양한 탄소원을 첨가하여 *R. sphaeroides* KD131의 수소생산량, 균체성장, pH 변화 및 탄소 원 분해율을 비교 분석하였다. 이용된 탄소원의 종류 는 acetate⁴, butyrate⁵, lactate, malate이며 0, 30, 60, 120mM을 첨가하였다. 질소원으로 L-glutamatic acid 1.2g/L을 사용하였다. 탄소원 모두 30-60mM이 첨

Fig. 3 Lactate and malate using the effect of cell growth and pH by *Rhodobacter sphaeroides* KD131 0 mM(\bigcirc), 30 mM(\bigcirc), 60 mM(\bigtriangledown), 120 mM(\triangle).

가되었을 때 균의 활성이 높았으며, 120mM 탄소원 은 오히려 균체성장과 수소생산을 저해하는 것을 볼 수 있었다. Acetate와 butyrate는 초기 pH가 6.8-7.0 이였지만, 배양 24시간 후 9이상으로 상승하였으며, lactate와 malate 보다 균체성장이 1.26배 낮았다.

먼저 Acetate와 butyrate를 비교하여 Fig. 2에 결 과를 나타냈다. Acetate가 첨가된 배양액에서는 pH 가 9이상을 유지하였으며, 48시간까지 균체는 성 장하지만 이후 균체량이 감소하였다. Acetate는 *R. sphaeroides* KD131에 의해서 분해가 잘 안될 뿐만 아 니라 수소생산도 낮은 것으로 보고되었으며, 균체 내에 Polyhydroxybutyrate(PHB)를 합성하기 위한 전구체 이며, 세포 내에 축적 되는 고분자 물질이지만 합 성 중 중간물질인 β-D-hydroxybutyrate가 세포 밖 으로 배출되어서 배양액의 pH를 상승시킨 것이라 고 한다. 후속 실험으로 PHB생성 유전자가 제거된 변이주를 사용했을 경우에 pH가 9까지 상승하지 않았다. 본 실험에서는 30mM acetate를 첨가할 때 48시간동안 약 90%를 분해한 반면 수소생산은 13ml 이다. 수소발생효율은 0.439mol H₂/mol acetate로 lactate, butyrate, malate보다 낮았다.

Butyrate를 탄소원으로 이용할 때 *R. sphaeroides* KD131은 배양 24시간 후 pH가 9까지 상승하였다. 균 체성장은 30mM을 첨가한 실험에서 가장 높았고, 수 소발생량은 적었지만 수소생산효율은 1.66mol Hz/mol butyrate로 좋은 양상을 띄었다. 유기산의 농도를 증가할수록 균체 성장은 저해되었으며, 이러한 저 해현상은 pH영향 보다 높은 농도의 butyrate가 균 체 성장과 수소생산에 영향을 준 것으로 사료된다. Lactate와 malate 비교하여 Fig. 3에 나타냈다.

Fig. 4 Photo-fermentation profiles of formate as corbonsource using *Rhodobacter sphaeroides* KD131 pH (\bigcirc), Cell concentration (\triangle), Degradated rate (\bigcirc), Hydrogen accumulated (\bigtriangledown).

Lactate를 첨가한 실험에서 배양 48시간 후 pH는 8 이며 acetate와 butyrate를 첨가한 경우에 비해서 증가하지 않았다. 그러나 배양 중 균체가 뭉치는 현 상이 있어서 균체량 측정중에 오차가 있을 것으로 사료 된다. 광합성 세균의 배양 중 균체가 뭉치는 현상은 여러 연구자에 의해 관찰되었지만, 그 직접 적인 원인은 밝혀지지 않았다. Fig. 4는 이 현상을 가시화한 사진이다.

Lactate 30mM과 60mM 첨가시 배양 48시간동안 분해율이 각각 79와 62%로, 60 mM을 첨가할 때 수 소발생효율(0.806mol H₂/mol lactate)보다 30mM을 첨가할 때 수소발생효율(1.135mol H₂/mol lactate) 이 높은 것으로 계산 되었다. Malate의 경우 초기 pH 7.0에서 24시간 후 pH 8.0으로 증가하여 큰 변화를 보이지 않았다. 30mM 이 60mM일 때 보다 수소생산이 3배 많았고, 분 해율이 높은 것으로 보아 butyrate와 비슷한 경향 을 보였다. 30mM을 첨가하였을 때 수소생산효율 이 1.97mol H₂/mol malate로 유기산 중 가장 높았 으며, 60mM을 첨가했을 때 0.88mol H₂/mol malate 로 낮았다.

Fig. 4에서와 같이 30mM formate는 광합성발효 18~24시간에 균체성장 및 수소생산이 발효기간 중 가장 높았으나, malate에 비해 같은 발효 시간에 각 각 25%와 4%에 불과하였다. 또한 formate를 첨가 한 농도의 C/N 비가 malate와 동일하도록 120mM 을 첨가 하였을 때에도 수소생산이 개선되지 않았 고, 오히려 높은 농도에서는 독성을 나타내었다.

3.2 최적 유기산 농도 및 수소생산

유기산 30mM과 60mM을 첨가하였을 때, 균체성 장과 수소생산율이 최적화되었다. 대부분의 탄소원 이 배양 48시간 후 높은 수소생산량과 균체성장을 보였다. 본 실험에서는 *R. spaeroides* KD131에 의 해 배양 48시간동안 30mM acetate를 첨가한 배지 에서 90%가 분해되었다. Acetate는 혐기 배양액 중 에 존재하는 가장 안정된 형태의 유기산이며, 홍색 비유황 세균에 의해 분해가 지연되는 것으로 보고

	concentration (mM)	amount of accumulation H ₂ (ml)	pН	cell growth (Abs. 660 nm)	substrate degradation (%)
Acetate	30 mM	13.40	9.61	3.82	90.08
	60 mM	16.10	9.71	3.89	57.03
Butyrate	30 mM	15.45	9.04	3.69	27.70
	60 mM	4.80	8.85	3.26	10.00
Lactate	30 mM	30.14	8.06	4.41	79.00
	60 mM	33.58	8.03	5.08	61.98
Malate	30 mM	54.93	8.02	4.88	83.20
	60 mM	18.24	8.21	4.15	31.00

Table 1 Effect of various carbon source on H₂ production pH, cell growth and substrate degradation 48 in time

배양조건 : serum bottle 150ml/ 배양액 50ml, 균체초기농도 660nm 흡광도 1.0, 혐기상태(Ar 치환), 할로겐등 110W/m², 온도 30℃, 100rpm교반

되었다⁶⁾.

Asada등이 연구한 *R. spaeroides*를 이용해 acetate 를 농도별로 첨가하여 수소생산량을 비교해본 결과 농도가 높아질수록 수소생산량이 증가했다. 그러나 168mM의 배양액에서는 오히려 저해 받는다는 사 실이 본 연구와 일치했다. Acetate의 누적 수소생산 량을 비교하여 볼 때 30mM일 때 보다 60mM의 경 우 약간 증가하였지만, 효율을 계산하여 보면 0.42~ 0.43mol H₂/mol acetate로 거의 차이가 없다. Malate 와 butyrate의 30mM을 각각 비교해볼 때 누적수소 생산량에서는 3.5배 이상 malate가 높았다. 그렇지 만 효율은 1.97mol H₂/mol malate와 1.66mol H₂/mol butyrate로 두 유기산 모두 높았으며, pH의 변화 로 butyrate 균의 활성이 떨어지는 것으로 보인다 (Table 1).

3.3 Carbon/Nitrogen 영향

탄소원의 종류와 농도별로 C/N ratio를 계산하여 비교한 것을 Table 2에 나타낸다. 여기서 질소원은 고정되어있고, 탄소원에 의해 계산 값이 달라졌다. 탄소수가 동일한 butyrate 와 malate 는 C/N 비율 이 같았으며, 수소생산 효율이 비슷하였지만 생산 되는 수소양과 분해속도는 malate가 빨랐다. 또한 malate 60mM과 30mM을 비교해볼 때, 48시간 이 후 균체량과 pH가 비슷한 조건이였지만 수소생산 은 30mM일 때 약 3배 이상 발생하였다. 이 결과를 볼 때, C/N 비는 25.71 인 60mM malate보다 C/N 12.86인 30mM이 기질 분해와 수소생산에 적합하였 다는 것을 알 수 있다.

Table 2 C/N ratio of acetate/glutamate, butyrate/glutamate, lactate/ glutamate, malate/ glutamate applied

	Ace	tate	Butyrate	
	30 mM	60 mM	30 mM	60 mM
C/N ratio	6.43	12.86	12.86	25.71
	Lac	tate	Malate	
	30 mM	60 mM	30 mM	60 mM
C/N ratio	9.64	19.29	12.86	25.71

Fig. 5 Color comparison of culture fluid with various carbon source (A) Acetate (B) Butyrate (C) Lactate (D) Malate.

3.4 배양액의 색 비교

각 배양액의 색을 비교하였을 때 acetate는 어두 운 노란색으로 나타났고, butyrate, lactate, malate 는 모두 적갈색을 띄었다. Acetate를 기질로 첨가할 때 다른 유기산에 비해 배양중 pH가 상승하며 이는 PHB나 카로티노이드 색소를 축적하는 것으로 보 고되어 있다⁷⁾. 그러나 본 연구에서는 위와 같은 축적 물질을 측정하지는 않았으며, 배양액의 색깔의 차이를 관찰하였다. 첨가된 탄소원의 종류와 *R. sphaeroides* KD131 배양 중 나타나는 색의 변화에 대한 연구는 거의 없다. Fig. 5는 이 배양액의 색을 비교하여 찍 은 사진이다.

4.결 론

- R. sphaeroides KD131은 lactate와 malate를 광 합성조건에서 탄소원으로 이용할 때 초기 pH 7.0 은 pH 8.0으로 유지되는 반면, acetate와 butyrate 에서는 pH 9.0이상으로 증가하였다.
- 2) Acetate 분해율이 가장 좋았지만 수소생산효율 은 가장 낮았고, butyrate는 초기 pH 7.0이 24시 간 후 pH 9.0이상 상승하여 균체성장도 정지하 고, 발생한 수소양과 유기산 분해율이 낮았다.
- 3) Lactate의 경우 균체 뭉침 현상이 나타났다.
- 4) Malate는 초기 pH 7.0이 24시간 후 pH 8.0로 증 가하여 변화 폭이 크지 않았고, 30mM일 때 1.1ml H₂/ml-배양액(1.97mol H₂/mol malate)으로 가 장 많은 수소를 생산하였다.

5) *R. sphaeroides* KD131의 최적 C/N ratio는 10~ 20이었다.

후 기

이 연구(논문)는 교육과학기술부의 지원으로 수 행하는 21세기 프론티어연구개발사업(수소에너지 사업단)의 일환으로 수행되었습니다.

참 고 문 헌

- Harun KoKu, Inci Eroglu, Ufuk Gunduz, Meral Yucel, Lemi Turker. "Aspects of the metabolism of hydrogen production by *Rhodobacter sphaeroides*", Int J Hydrogen energy 2002;27:1315-1329.
- 김미선, 윤영수, 심상준, 박태현, 이정국, "각 종 혐기 미생물 발효에 의한 유기산 및 수소 생산" 한국수소 및 신에너지학회 논문집, 2002; 13.1;330-338.
- 3) Uyar B, Erogly I, Yucel M, Gunduz U. "Photofermentative hydrogen production from volatile

fatty acids present in dark fermentation effluents" Int J Hydrogen Energy 2009;34:4517-4523.

- Ru Ying Li, Tong Zhang, Herbert H.P. Fang, "Characteristics of a phototrophic sludge producing hydrogen from acetate and butyrate" Int J Hydrogen energy 2008;33:2147-2155.
- Barbosa JM, Rocha MSJ, Rtamper J, Wijffels HR. "Acetate as a carbon source for hydrogen production by photosynthetic bacteria" J Biotechnol 2001;85:25-33.
- 6) Yasyo Asada, Mitsutaka Ohsawa, Yuichiro, Katsuhiro Ishimi, Makoto Fukatsu, Akihiro Hideno, Tatsuki Wakayama, Jun Miyake, "Re-evaluation of hydrogen productivity from acetate by some photosynthetic bacteria" Int J Hydrogen energy 2008;33:5147-5150.
- Zhenxin Gu, Deming Chen, Yongbin Han, Zhigang Chen, Feirong Gu, "Optimization of carotenoids extraction from *Rhodobacter sphaeroides*. LWT 2008;41:1082-1088.