최근 보건의료분야에서 활발하게 연구되고 있는 "Epigenetics"란 무엇인가? -기본개념 및 기전을 중심으로-

What is Epigenetics? -Focusing on Basic Concepts and Mechanisms-

  • 이선동 (상지대학교 한의과대학 예방의학교실) ;
  • 박성균 (미시간대학교 보건대학원 환경보건학과) ;
  • 고성규 (경희대학교 한의과대학 예방의학교실) ;
  • 신헌태 (동신대학교 한의과대학 예방의학교실) ;
  • 김명동 (상지대학교 한의과대학 생리학교실)
  • Lee, Sun-Dong (Sangji University, College of Oriental Medicine, Department of Preventive Medicine) ;
  • Park, Sung-Kyun (University of Michigan, School of Public Health Environmental Health Sciences) ;
  • Ko, Seong-Gyu (Kyung Hee University, College of Oriental Medicine, Department of Preventive Medicine) ;
  • Shin, Heon-Tae (Dongshin University, College of Oriental Medicine, Department of Preventive Medicine) ;
  • Kim, Myung-Dong (Sangji University, College of Oriental Medicine, Department of Oriental Physiology Medicine)
  • 투고 : 2010.08.03
  • 심사 : 2010.08.17
  • 발행 : 2010.08.31

초록

The individual differences in disease development and susceptibility have been researched primarily on the subject of genes, environment or the interaction between genes and the environment respectively. However, there have been limitations in explaining complex diseases, and the differences in health and diseases in monozygotic and dizygotic twins. Fortunately, thanks to active research on the relationship between genes and the environment, and epigenetics, there has been much progress in the understanding of body's reactions and changes. Epigenetics is referred to as a study of gene expression through the interactions of DNA methylation, chromatin's histone and the change of structure in tail, RNA editing without any change in DNA sequence. In this paper, we introduce the basic concepts and mechanisms of epigenetics. The result of the epigenetics is heritable ; can regulate gene expressions ; is reversible ; and has many variable forms depending on cell types. The influences of epigenetics occur throughout life, but it is mainly determined in utero during early pregnancies. Diseases occur or the risk rises if these influences continue after birth until adult life when problems occur in excess/lack of nutrition, environmental plasticity, or already inputted data. Therefore, there is a need for change and innovation, especially in interest and investment in health education for young women near pregnancies and correct treatment of epigenetic-related diseases.

키워드

참고문헌

  1. Jirtle R, Skinner M. Environmental epigenomics and disase susceptibility. Nature 2007 ; 8 : 253-262.
  2. Waggoner D. Mechanisms of Disease : Epigenesis. Seminars in Pediatric Neurology 2007:7-14.
  3. Foley D, Craig J, Morley R, Olsson C, Dwyer T, Smith K, Saffery R. Prospects for Epigenetic Epidemiology. Am J Epidemiol 2009 ; 169 : 389-400.
  4. Delcuve G, Rastegar M, Davie J. Epigenetic Control. J. Cell. Physiol 2009 : 243-250.
  5. Gluckman P, Hanson M, Cooper C, Thornburg K. Effect of In Utero and Early-Life Conditions on Adult Health and Disease. N Engl J Med 2008 ; 359 : 61-73. https://doi.org/10.1056/NEJMra0708473
  6. Youngson N, Whitelaw E. Transgenerational Epigenetic Effects. Annu. Rev. Genom. Human Genet. 2008 ; 9 : 233-57. https://doi.org/10.1146/annurev.genom.9.081307.164445
  7. Anway M, Skinner M. Epigenetic Transgenerational Actions of Endocrine Disruptors. Endocrinology 2006 ; 147(6)(Supplement) : S43-S49. https://doi.org/10.1210/en.2005-1058
  8. Martin C, Zhang Yi. Mechanisms of epigenetic inheritance. Current Opinion in Cell Biology 2007 ; 19 : 266-272. https://doi.org/10.1016/j.ceb.2007.04.002
  9. Waterland R. Is Epigenetics an Important Link between Early Life Events and Adult Disease? Horm Res 2009 ; 71(suppl 1) : 13-16.
  10. Ozanne S, Constancia M. Mechanisms of Disease : the developmental origins of disase and the role of the epigenotype. Nature Clinical Practice 2007 ; 3(7) : 539-546. https://doi.org/10.1038/ncpendmet0531
  11. Gluckman P, Hanson M, Beedle A. Early Life Events and Their Consequences for Later Disease : A Life History and Evolutionary Perspective. American Journal of Human Biology 2007 ; 19 : 1-19. https://doi.org/10.1002/ajhb.20590
  12. Fraga M, Ballestar E, Paz M, Ropero S, Setien F, Ballestar M, Heine-Suner, Cigudosa J, Urioste M, Benitez J, Boix-Chornet M, Sanchez-Aguilera A, Ling C, Carlsson E, Poulsen P, Vaag A, Stephan Z, Spector T, Wu YZ, Plass C, Esteller M. Epigenetic differences arise during the life of monozygotic twins. PNAS 2005 ; 102(30) : 10604-10609. https://doi.org/10.1073/pnas.0500398102
  13. Poulsen P, Esteller M, Vaag A, Fraga M. The Epigenetic Basis of Twin Discordance in Age-Related Diseases. Pediatric Research 2006 ; 61(5) : 38R-42R.
  14. Petronis A. Epigenetics and twins : three variations on the theme. TRENDS in Genetics 2006 ; 22(7) : 347-350. https://doi.org/10.1016/j.tig.2006.04.010
  15. Wong A, Gottesman I, Petronis A. Phenotypic differences in genetically identical organisms : the epigenetic perspective. Human Molecular Genetics 2005 ; 14 : R11-R18. https://doi.org/10.1093/hmg/ddi116
  16. Lopez J, Percharde M, Coley HM, Webb A, Crook T. The context and potential of epigenetics in oncology. British Journal of Cancer 2009 ; 100 : 571-577. https://doi.org/10.1038/sj.bjc.6604930
  17. Esteller M. Epigenetics in Cancer. The New England Journal of Medicine 2008 ; 358 : 1148-59. https://doi.org/10.1056/NEJMra072067
  18. Ling C, Del Guerra S, Lupi R, Rönn T, Gronhall C, Luthman H, Masiello P, Marchetti P, Groop L, Del Prato S. Epigenetic regulation of PPARGC1A in human type 2 diabetic islets and effect on insulin secretion. Diabetologia(2008) 51 : 615-622. https://doi.org/10.1007/s00125-007-0916-5
  19. Schanen NC. Epigenetics of autism spectrum disorders. Hum Mol Genet. 2006 ; 15(specno 2) : R138-R150. https://doi.org/10.1093/hmg/ddl213
  20. Campion J, Milagro F., Martinez J. Individuality and epigenetics in obesity. Obesity Reviews 2009 : 1-10.
  21. Wu J, Basha R, Brock B, Cox D, Cardozo- Pelaez F, McPherson C, Harry J, Rice D, Maloney B, Chen D, Lahiri D, Zawia N. Alzheimer's Disease (AD)-Like Pathology in Aged Monkeys after Infantile Exposure to Environmental Metal Lead (Pb) : Evidence for a Developmental Origin and Environmental Link for AD. The Journal of Neuroscience 2008 ; 28(1) : 3-9. https://doi.org/10.1523/JNEUROSCI.4405-07.2008
  22. Bolin C, Basha R, Cox D, Zawia N, Maloney B, Lahiri D, Cardozo-Pelaez F. Exposure to lead (Pb) and the developmental origin of oxidative DNA damage in the aging brain. The FASEB Journal 2006:1-19.
  23. Steinke JW, Rich SS, Borish L. 5. Genetics of allergic disease. J Allergy Clin Immunol. 2008 ; 121(2 suppl) : S384-S387quiz S416. https://doi.org/10.1016/j.jaci.2007.07.029
  24. Cooper C, Fall C, Egger P, Hobbs R, Eastell R, Barker D. Growth in infancy andbone mass in later life. Ann Rheum Dis 1997 ; 56 : 17-21.
  25. Lucas A. Programming by early nutrition in man. Ciba Foundation Symposium 1991 ; 156 : 38-50.
  26. Rich-Edwards JW, Stampfer MJ, Manson JE, et al. Birth weight and risk of cardiovascular disease in a cohort of women followed up since 1976. BMJ 1997 ; 315 : 396-400.
  27. Frankel S, Elwood P, Sweetnam P, Yarnell J, Smith GD. Birthweight, body-mass index in middle age, and incident coronary heart disease. Lancet 1996 ; 348 : 1478-80. https://doi.org/10.1016/S0140-6736(96)03482-4
  28. Waterland R, Michels K. Epigenetic Epidemiology of the Developmental Origins Hypothesis. Metab Disord 2007 ; 27 : 363-88.
  29. Stanner SA, Yudkin JS. Fetal programming and the Leningrad Siege study. Twin Research 2001 ; 4 : 287-292. https://doi.org/10.1375/1369052012498
  30. Roseboom TJ, van der Meulen JH, Ravelli AC, Osmond C, Barker DJ, Bleker OP. Effects of prenatal exposure to the Dutch famine on adult disease in later life : an overview. Twin Research 2001 ; 4 : 293-298. https://doi.org/10.1375/twin.4.5.293
  31. Allison L. 대표역자 최원재. 분자생물학입 문서. 월드사이언스 2009, p.13, 14, 18-25, 38-43, 120, 134-5, 313-323, 351-356, 393-426.
  32. Nafee TM, Farrell WE, Carroll WD, Fryer AA, Ismail KMK. Epigenetic control of fetal gene expression. BJOG 2008 ; 115 : 158-168.
  33. 박성균, 이선동. 환경오염물질과 에피제네틱. 한국환경보건학회지. 2009 ; 35(5) : 343-354.
  34. Sergio E Baranzini, Joann Mudge, Jeniifer C. van Velkinburgh, Pouya Khankhanian, Irina Khrebtukova, Neil A. Miller, etc. Genome, epigenome and RNA sequences of monozygotic twins discordant for multiple sclerosis. Nature 2010 ; 464(29) : 1351-1358. https://doi.org/10.1038/nature08990
  35. Cess B. M. Oudejans. Noncoding RNA and DNA as biomarkers : Toward an EpigeneticFetal Barcode for Use in Maternal Plasma. Clinical Chemistry 2008 ; 54(3) : 456-457. https://doi.org/10.1373/clinchem.2007.100123
  36. Sarah Tucker, Alexa Vitins and Craig S Pikaard. Nucleolar dominance and ribosomal RNA gene silencing. Current Opinion in Cell Biology 2010 ; 22 : 351-356. https://doi.org/10.1016/j.ceb.2010.03.009
  37. Michael K. Skinner, Mohan Manikkam and Carlos Guettero-Bosagna. Epigenetic transgenerationalactions of environmenral factors in disease etiology. Trends in Endocrinology and Metabolism Vol.21 No.4 : 214-220.
  38. Zeisel S. Epigenetic mechanisms for nutrition determinants of later health outcomes. Am J Clin Nutr 2009 ; 89(suppl) : 1S-6S. https://doi.org/10.3945/ajcn.2008.26792
  39. Langley-Evans S. Nutritional programming of disase: unraveling the mechanism. J. Anat. 2008 ; 1-16.
  40. Csaba, G. & Karabelyos, C. Transgenerational effect of a single neonatal benzpyrene treatment (imprinting) on the sexual behavior of adult female rats. Hum. Exp. Toxicol 1997 ; 16 : 553-556. https://doi.org/10.1177/096032719701601001
  41. Fujii, T. Transgenerational effects of maternal exposure to chemicals on the functional development of the brain in the offspring. Cancer Causes Control 1997 ; 8 : 524-528. https://doi.org/10.1023/A:1018477809755
  42. Steinhardt, G. F. Endocrine disruption and hypospadias. Adv. Exp. Med. Biol 2004 ; 545 : 203-215 https://doi.org/10.1007/978-1-4419-8995-6_13
  43. Santos F, Hendrich B, Reik W, Dean W. Dynamic Reprogramming of DNA Methylation in the Early Mouse Embryo. Developmental Biology 2002 ; 241 : 172-182. https://doi.org/10.1006/dbio.2001.0501
  44. Burdge G, Hanson M, Slater-Jefferies J, Lillycrop K. Epigenetic regulation of transcription :A mechanism for inducing variations in phenotype(fetal programming) by differences in nutrition during early life? Br J Nutr 2007 ; 97(6) : 1036-1046. https://doi.org/10.1017/S0007114507682920
  45. Merico V, Barbieri J, Zuccotti M, Joffe B, Cremer T, Redi CA, Solovei I, Garagna S. Epigenomic differentiation in mouse preimplantation nuclei of biparental, parthenote and cloned embryos. Chromosome Research 2007 ; 15 : 341-360.
  46. Fraga M, Esteller M. Epgienetics and aging: the targets and the marks. TRENDS in Genetics 2007 ; 23(8) : 413-418. https://doi.org/10.1016/j.tig.2007.05.008
  47. Zeisel S. Epigenetic mechanisms for nutrition determinants of later health outcomes. Am J Clin Nutr 2009 ; 89(suppl) : 1S-6S. https://doi.org/10.3945/ajcn.2008.26792
  48. Langley-Evans S. Nutritional programming of disase : unraveling the mechanism. J. Anat. 2008 ; 1-16.
  49. Wu G, Bazer F, Cudd T, Meininger C, Spencer T. Maternal Nutrition and Fetal Development. The Journal of Nutrition 2004 : 2169-2172.
  50. Fish E, Shahrokh D, Bagot R, Caldji C, Bredy T, Szyf M, Meaney M. Epigenetic Programming of Stress through Variations in Maternal Care. Ann. N.Y. Acade. Sci. 2004 ; 1036 : 167-180.
  51. Szyf M, Weaver I, Meaney M. Maternal care, the epigenome and phenotype differences in behavior. Reproductive Toxicology 2007 ; 24 : 9-19. https://doi.org/10.1016/j.reprotox.2007.05.001
  52. Weaver I, Cervoni N, Champagne F, Alessio A, Sharma S, Seckl J, Dymov S, Szyf M, Meaney M. Epigenetic programming by maternal behavior. Nature Neuroscience 2004 ; 7(8) : 847-854. https://doi.org/10.1038/nn1276
  53. Cardno, A.G. and Gottesman, I.I., II. Twin studies of schizophrenia : From bow-andarrow concordances to Star Wars Mx and functional genomics. Am. J. Med. Genet 2000 ; 97 : 12-17. https://doi.org/10.1002/(SICI)1096-8628(200021)97:1<12::AID-AJMG3>3.0.CO;2-U
  54. Bertelsen A, Harvald B, Hauge M. A Danish twin study of manic-depressive disorders. Br J Psychiatry 1977 ; 130 : 330-51. https://doi.org/10.1192/bjp.130.4.330
  55. Lichtenstein P, Holm N, Verkasalo P, Iliadou A, Kaprio J, Koskenvuo M, Pukkala E, Skytthe A, Hemminki K. Environmental and Heritable Factors in the Causation of Cancer. The England Journal of Medicine 2000 ; 343(3) : 78-85. https://doi.org/10.1056/NEJM200007133430201
  56. Davis C, Uthus E. DNA Methylation, Cancer Susceptibility, and Nutrient Interactions. The Society for Experimental Biology and Medicine 2004 ; 229 : 988-995. https://doi.org/10.1177/153537020422901002
  57. Waterland R, Jirtle R. Transposable Elements :Targets for Early Nutritional Effects on Epigenetic Gene Regulation. Molecular and Cellular Biology 2003 ; 23(15) : 5293-5300. https://doi.org/10.1128/MCB.23.15.5293-5300.2003
  58. Dolinoy D, Huang D, Jirtle R. Maternal nutrient supplementation counteracts bisphenol A-induced DNA hypomethylation in early development. PNAS 2007 ; 104 (32) : 13056-13061. https://doi.org/10.1073/pnas.0703739104
  59. Morange M. The Relations between Genetics and Epigenetics. Ann. N.Y. Acad. Sci. 2002 ; 981 : 50-60. Gosden R, Feinberg A. Genetics and Epigenetics–Nature's Penand- Pencil Set. N Engl J Med 2007 ; 356 :731-733. https://doi.org/10.1056/NEJMe068284
  60. Nakao M. Epigenetics : interaction of DNA methylation and chromatin. Gene 2001 ; 278 : 25-31. https://doi.org/10.1016/S0378-1119(01)00721-1
  61. Geiman TM, Robertson KD. Chromatin Remodeling, Histone Modifications, and DNA Methylation–How Does it All Fit Together? Journal of Cellular Biochemistry 2002 ; 87 : 117-125. https://doi.org/10.1002/jcb.10286
  62. Francis N, Kingston R, Woodcock C. Chromatin Compaction by a Polycomb Group Protein Complex. Science 2004 ; 306 : 1574-1577. https://doi.org/10.1126/science.1100576
  63. Mutskov V, Raaka BM, Relsenfeld G, Gershengorn MC. The human insulin gene displays transcriptionally active epigenetic marks in islet-derived mesenchymal precursor cells in the absence of insulin expression. Stem Cells 2007 ; 25 : 3223-3233. https://doi.org/10.1634/stemcells.2007-0325
  64. Tang WY, Ho SM. Epigenetic reprogramming and imprinting in origins of disease. Rev Endocr Metab Disord 2007 ; 8 : 173-182. https://doi.org/10.1007/s11154-007-9042-4
  65. Qiu J. Unfinished Symphony. Nature 2006 (news feature) ; 441 : 143-145. https://doi.org/10.1038/441143a