Anti-oxidant and Anti-aging Activities of Essential Oils of Pinus densiflora Needles and Twigs

소나무 잎과 가지의 정유와 그 성분들의 항산화 및 항노화 작용

  • Kim, Youn-Joung (Division of Pathophysiology College of Pharmacy Chung-Ang University) ;
  • Cho, Bong-Jae (Division of Pathophysiology College of Pharmacy Chung-Ang University) ;
  • Ko, Myung-Soo (Division of Pathophysiology College of Pharmacy Chung-Ang University) ;
  • Jung, Jae-Min (Division of Pathophysiology College of Pharmacy Chung-Ang University) ;
  • Kim, Hee-Rae (Division of Pathophysiology College of Pharmacy Chung-Ang University) ;
  • Song, Ho-Sun (Division of Pathophysiology College of Pharmacy Chung-Ang University) ;
  • Lee, Ji-Yun (Division of Pathophysiology College of Pharmacy Chung-Ang University) ;
  • Sim, Sang-Soo (Division of Pathophysiology College of Pharmacy Chung-Ang University) ;
  • Kim, Chang-Jong (Division of Pathophysiology College of Pharmacy Chung-Ang University)
  • 김연정 (중앙대학교 약학대학 병태생리학교실) ;
  • 조봉재 (중앙대학교 약학대학 병태생리학교실) ;
  • 고명수 (중앙대학교 약학대학 병태생리학교실) ;
  • 정재민 (중앙대학교 약학대학 병태생리학교실) ;
  • 김희래 (중앙대학교 약학대학 병태생리학교실) ;
  • 송호선 (중앙대학교 약학대학 병태생리학교실) ;
  • 이지윤 (중앙대학교 약학대학 병태생리학교실) ;
  • 심상수 (중앙대학교 약학대학 병태생리학교실) ;
  • 김창종 (중앙대학교 약학대학 병태생리학교실)
  • Received : 2010.01.20
  • Accepted : 2010.06.10
  • Published : 2010.08.31

Abstract

To investigate effects of pine essential oil isolated by steam distillation from Pinus densiflora needles (PN) and twigs (PT) on anti-oxidant and anti-aging activities, the experiments were carried out to determine anti-oxidant and antiaging activities on DPPH radical scavenging activity, NBT/xanthine oxidase-superoxide scavenging activity, silica-induced intracellular $H_2O_2$ and hydroxyl radical generation in RAW264.7 cells, hyaluronidase and elastase activities in vitro. Essential oil of PN and PT were contained 0.225 and 0.176 (w/v) %, respectively. PN was contained with 30 kinds of essential oil and its major constituent is $\alpha$-pinene (21.5%). Further PT was contained with 40 kinds of essential oil and its major constituent is $\beta$-pinene (22.4%) in GC/MS assay. Other essential oils of PN were $\beta$-pinene, camphene, myrcene, limonene, terpinolene, $\alpha$-terpineol, bornyl acetate, $\alpha$-copaene, caryophellene and humulene and PT were $\alpha$-pinene, camphene, phellandrene, limonene, terpinolene, $\alpha$-terpineol, bornyl acetate, $\alpha$-copaene, caryophellene and humulene. The essential oil of PT have more active than that of PN in anti-oxidant activity which has significant DPPH radical and superoxide scavenging activity, and significant inhibitory activities on silica-induced intracellular $H_2O_2$ and hydroxyl radical generation, as well as, significantly inhibited elastase and hyaluronidase activities. Further, phellandrene, myrcene and $\alpha$-pinene have DPPH radical and superoxide scavenging activities, $\beta$-pinene, terpinolene, myrcene and phellandrene inhibited silica-induced intracellular $H_2O_2$ and hydroxyl radical generations. And also phellandrene and $\beta$-pinene inhibited hyaluronidase and elastase activities. In conclusion, the essential oils isolated from PN and PT have anti-oxidant and anti-aging activities.

Keywords

References

  1. Li, Q., Kobayashi, M., Inagaki, H., Hirata, Y., Li, Y. J., Hirata, K., Shimizu, T., Suzuki, H., Katsumata, M., Wakayama, Y., Kawada, T., Ohira, T., Matsui, N. and Kagawa, T. : A day trip to a forest park increases human natural killer activity and the expression of anti-cancer proteins in male subjects. J. Biol. Regul. Homeost Agents 24, 157 (2010).
  2. Burits, M. and Bucar, F. : Antioxidant activity of Nigella sativa essential oil. Phytother. Res. 14, 323 (2000). https://doi.org/10.1002/1099-1573(200008)14:5<323::AID-PTR621>3.0.CO;2-Q
  3. Grassmann, J., Hippeli, S., Dornisch, K., Rohnert, U., Beuscher, N. and Elstner, E. F. : Antioxidant properties of essential oils. Possible explanations for their anti-inflammatory effects. Arzneimittelforschung 50, 135 (2000).
  4. Hong, E. J., Na, K. J., Choi, I. G., Choi, K. C. and Jeung, E. B. : Antibacterial and antifungal effects of essential oils from coniferous trees. Biol. Pharm. Bull. 27, 863 (2004). https://doi.org/10.1248/bpb.27.863
  5. Koukos, P. K., Papadopoulou, K. I., Patiaka, D. T. and Papagiannopoulos, A. D. : Chemical composition of essential oils from needles and twigs of balkan pine (Pinus peuce grisebach) grown in Northern Greece. J. Agric. Food Chem. 48, 1266 (2000). https://doi.org/10.1021/jf991012a
  6. Jung, M. J., Chung, H. Y., Choi, J. H. and Choi, J. S. : Antioxidant principles from the needles of red pine, Pinus densiflora. Phytother. Res. 17, 1064 (2003). https://doi.org/10.1002/ptr.1302
  7. Jang, M. J., An, B. J., Lee, C. E., Lee, B. G. and Lee, D. H. : Study on the anti-oxidant effect of Pinus rigida Mill. inner bark extracts. J. Kor. For. Soc. 97, 88 (2008)
  8. Kim, S. M., Cho, Y. S., Sung, S. K., Lee, I. G., Lee, S. H. and Kim, D. G. : Antioxidative and nitrite scavenging activity of pine needle and green tea extracts. Kor. J. Food Sci. Anim. Resour. 22, 13 (2002).
  9. Yoo, J. H., Cha, J. Y., Jeong, Y. K., Chung, K. T. and Cho, Y. S. : Antioxidative effects of pine (Pinus densflora) needle extracts. J. Life Sci. 14, 863 (2004). https://doi.org/10.5352/JLS.2004.14.5.863
  10. Choi, E. M. : Antinociceptive and antiinflammatory activity of pine (Pinus densflora) pollen extract. Phytother. Res. 21, 471 (2007). https://doi.org/10.1002/ptr.2103
  11. Choi, H. S., Hang, D., Kang, S. C., Sohn, E. S., Lee, S. P., Pyo, S. K. and Son, E. W. : Immunomodulatory activity of pine needle (Pinus densflora) extracts in macrophages. J. Food Sci. Nutr. 11, 105 (2006). https://doi.org/10.3746/jfn.2006.11.2.105
  12. Jeon, J. R., Kim, J. Y., Lee, K. M. and Cho, D. H. : Anti-obese effects of mixture contained pine needle, black tea, and green tea extracts. J. Kor. Soc. Appl. Biol. Chem. 48, 375 (2005).
  13. Choi, J. H., Kim, D. I., Park, S. H., Back, S. J., Kim, N. J., Cho, W. K., Kim, K. J. and Kim, H. S. : Effects of pine needle ethyl acetate fraction on acetylcholine (ACh) and its related enzymes in brain of rats. Kor. J. Nutr. 37, 95 (2004).
  14. Mumm, R., Tiemann, T., Schulz, S. and Hilker, M. : Analysis of volatiles from black pine (Pinus nigra): significance of wounding and egg deposition by a herbivorous sawfly. Phytochem. 65, 3221 (2004). https://doi.org/10.1016/j.phytochem.2004.10.010
  15. Lazutka, J. R., Mierauskiene, J., Slapsyte, G. and Dedonyte, V. : Genotoxicity of dill (Anethum graveolens L.), peppermint (Menthaxpiperita L.) and pine (Pinus sylvestris L.) essential oils in human lymphocytes and Drosophila melanogaster. Food Chem. Toxicol. 39, 485 (2001). https://doi.org/10.1016/S0278-6915(00)00157-5
  16. Muhlbauer, R. C., Lozano, A., Palacio, S., Reinli, A. and Felix, R. : Common herbs, essential oils, and monoterpenes potently modulate bone metabolism. Bone 32, 372 (2003). https://doi.org/10.1016/S8756-3282(03)00027-9
  17. Macchioni, F., Cioni, P. L., Flamini, G., Morelli, I., Perrucci, S., Franceschi, A., Macchioni, G. and Ceccarini, L. : Acaricidal activity of pine essential oils and their main components against Tyrophagus putrescentiae, a stored food mite. J. Agric. Food Chem. 50, 4586 (2002). https://doi.org/10.1021/jf020270w
  18. Ando, Y. : Breeding control and immobilizing effects of wood microingredients on house dust mites. Nippon Koshu Eisei Zasshi. 41, 741 (1994).
  19. Berrabah, M., Andre, D., Verite, P., Zahidi, A. and Lafont, O. : Aminoglutethimide included in nanocapsules suspension: comparison of GC-MS and HPLC methods for control. J. Pharm. Biomed Anal. 35, 761 (2004). https://doi.org/10.1016/j.jpba.2004.02.030
  20. McCune, L. M. and Johns, T. : Antioxidant activity in medicinal plants associated with the symptoms of diabetes mellitus used by the Indigenous Peoples of the North American boreal forest. J. Ethanopharmacol. 82, 197 (2002). https://doi.org/10.1016/S0378-8741(02)00180-0
  21. Mariencheck, M. C., Davis, E. C., Zhang, H., Ramirez, F., Rosenbloom, J., Gibson, M., Parks, W. C. and Mecham, R. P. : Fibrillin-1 and fibrillin-2 show temporal and tissue-specific regulation of expression in developing elastic tissues. Connect Tissue Res. 31, 87 (1995). https://doi.org/10.3109/03008209509028396
  22. Yoshihiro, O., Shingo, T., Minoru, A., Akira, I., Ryoji, K. and Izumi, H. : Expression of elastin-related proteins and matrix metalloproteinases in actinic elastosis of sun-damaged skin. Arch. Dermatol. Res. 292, 27 (2000). https://doi.org/10.1007/PL00007457
  23. Ciesla, D. J., Moore, E. E., Biffl, W. L., Gonzalez, R. J. and Silliman, C. C. : Hypertonic saline attenuation of the neutrophil cytotoxic response is reversed upon restoration of normotonicity and reestablished by repeated hypertonic challenge. Surgery 129, 567 (2001).
  24. Huang, H. M., Zhang, H., Ou, H. C., Chen, H. L., Gibson, G. E. : alpha-Keto-beta-methyl-n-valeric acid diminishes reactive oxygen species and alters endoplasmic reticulum Ca(2+) stores. Free Radic. Biol. Med. 37, 17 (2004).
  25. Jacob, C., Arteel, G. E., Kanda, T., Engman, L. and Sies, H. : Water-soluble organotellurium compounds: catalytic protection against peroxynitrite and release of zinc from metallothionein. Chem. Res. Toxicol. 13, 3 (2000). https://doi.org/10.1021/tx990156g