DOI QR코드

DOI QR Code

FOURIER TRANSFORM AND Lp-MIXED PROJECTION BODIES

  • Liu, Lijuan (SCHOOL OF MATHEMATICS AND COMPUTATIONAL SCIENCE HUNAN UNIVERSITY OF SCIENCE AND TECHNOLOGY) ;
  • Wang, Wei (SCHOOL OF MATHEMATICS AND COMPUTATIONAL SCIENCE HUNAN UNIVERSITY OF SCIENCE AND TECHNOLOGY) ;
  • He, Binwu (DEPARTMENT OF MATHEMATICS SHANGHAI UNIVERSITY)
  • Received : 2009.04.01
  • Accepted : 2009.11.03
  • Published : 2010.09.30

Abstract

In this paper we define the $L_p$-mixed curvature function of a convex body. We develop a formula connection the support function of $L_p$-mixed projection body with Fourier transform of the $L_p$-mixed curvature function. Using this formula we solve an analog of the Shephard projection problem for $L_p$-mixed projection bodies.

Keywords

References

  1. R. J. Gardner, Geometric Tomography, Second edition. Encyclopedia of Mathematics and its Applications, 58. Cambridge University Press, Cambridge, 2006.
  2. R. J. Gardner, A. Koldobsky, and Th. Schlumprecht, An analytic solution to the Busemann-Petty problem on sections of convex bodies, Ann. of Math. (2) 149 (1999), no. 2, 691-703. https://doi.org/10.2307/120978
  3. I. M. Gelfand and G. E. Shilov, Generalized Functions. Vol. 1, Properties and operations. Academic Press, New York-London, 1964.
  4. I. M. Gelfand and N. Y. Vilenkin, Generalized Functions, Academic Press, New York-London, 1964.
  5. A. Koldobsky, Intersection bodies, positive definite distributions, and the Busemann-Petty problem, Amer. J. Math. 120 (1998), no. 4, 827-840. https://doi.org/10.1353/ajm.1998.0030
  6. A. Koldobsky, A generalization of the Busemann-Petty problem on sections of convex bodies, Israel J. Math. 110 (1999), 75-91. https://doi.org/10.1007/BF02808176
  7. A. Koldobsky, Fourier Analysis in Convex Geometry, Mathematical Surveys and Monographs, 116. American Mathematical Society, Providence, RI, 2005.
  8. A. Koldobsky, D. Ryabogin, and A. Zvavitch, Projections of convex bodies and the Fourier transform, Israel J. Math. 139 (2004), 361-380. https://doi.org/10.1007/BF02787557
  9. E. Lutwak, The Brunn-Minkowski-Firey theory. I. Mixed volumes and the Minkowski problem, J. Differential Geom. 38 (1993), no. 1, 131-150. https://doi.org/10.4310/jdg/1214454097
  10. E. Lutwak, The Brunn-Minkowski-Firey theory. II. Affine and geominimal surface areas, Adv. Math. 118 (1996), no. 2, 244-294. https://doi.org/10.1006/aima.1996.0022
  11. E. Lutwak, D. Yang, and G. Zhang, $L_p$ affine isoperimetric inequalities, J. Differential Geom. 56 (2000), no. 1, 111-132. https://doi.org/10.4310/jdg/1090347527
  12. S. J. Lv, On an analytic generalization of the Busemann-Petty problem, J. Math. Anal. Appl. 341 (2008), no. 2, 1438-1444. https://doi.org/10.1016/j.jmaa.2007.11.053
  13. C. M. Petty, Projection bodies, Proc. Colloquium on Convexity (Copenhagen, 1965) pp. 234-241 Kobenhavns Univ. Mat. Inst., Copenhagen, 1967.
  14. D. Ryabogin and A. Zvavitch, The Fourier transform and Firey projections of convex bodies, Indiana Univ. Math. J. 53 (2004), no. 3, 667-682. https://doi.org/10.1512/iumj.2004.53.2399
  15. R. Schneider, Zur einem Problem von Shephard uber die Projektionen konvexer Korper, Math. Z. 101 (1967), 71-82. https://doi.org/10.1007/BF01135693
  16. R. Schneider, Convex Bodies: The Brunn-Minkowski Theory, Encyclopedia of Mathematics and its Applications, 44. Cambridge University Press, Cambridge, 1993.
  17. A. Zvavitch, The Busemann-Petty problem for arbitrary measures, Math. Ann. 331 (2005), no. 4, 867-887. https://doi.org/10.1007/s00208-004-0611-5

Cited by

  1. The ith p-affine surface area vol.2015, pp.1, 2015, https://doi.org/10.1186/s13660-015-0703-7
  2. Some inequalities related to (i,j)-type Lp-mixed affine surface area and Lp-mixed curvature image vol.2013, pp.1, 2013, https://doi.org/10.1186/1029-242X-2013-470
  3. The generalized L p -mixed affine surface area vol.31, pp.11, 2015, https://doi.org/10.1007/s10114-015-3140-0
  4. The ith p-geominimal surface area vol.2014, pp.1, 2014, https://doi.org/10.1186/1029-242X-2014-356
  5. Stability in the shephard problem for L p -projection of convex bodies vol.19, pp.4, 2014, https://doi.org/10.1007/s11859-014-1014-4