DOI QR코드

DOI QR Code

Control of Surface Chemistry and Electrochemical Performance of Carbon-coated Silicon Anode Using Silane-based Self-Assembly for Rechargeable Lithium Batteries

  • Choi, Hyun (Department of Fine Chemical Engineering & Applied Chemistry, Chungnam National University) ;
  • Nguyen, Cao Cuong (Department of Fine Chemical Engineering & Applied Chemistry, Chungnam National University) ;
  • Song, Seung-Wan (Department of Fine Chemical Engineering & Applied Chemistry, Chungnam National University)
  • Received : 2010.03.24
  • Accepted : 2010.07.15
  • Published : 2010.09.20

Abstract

Silane-based self-assembly was employed for the surface modification of carbon-coated Si electrodes and their surface chemistry and electrochemical performance in battery electrolyte depending on the molecular structure of silanes was studied. IR spectroscopic analyses revealed that siloxane formed from silane-based self-assembly possessed Si-O-Si network on the electrode surface and high surface coverage siloxane induced the formation of a stable solid-electrolyte interphase (SEI) layer that was mainly composed of organic compounds with alkyl and carboxylate metal salt functionalities, and PF-containing inorganic species. Scanning electron microscopy imaging showed that particle cracking were effectively reduced on the carbon-coated Si when having high coverage siloxane and thickened SEI layer, delivering > 1480 mAh/g over 200 cycles with enhanced capacity retention 74% of the maximum discharge capacity, in contrast to a rapid capacity fade with low coverage siloxane.

Keywords

References

  1. Netz, A.; Huggins, R. A.; Weppner, W. J. Power Sources 2003, 119-121, 95.
  2. Hatchard, T. D.; Dahn, J. R. J. Electrochem. Soc. 2004, 151, A838. https://doi.org/10.1149/1.1739217
  3. Obrovac, M. N.; Christensen, L. Electrochem. Solid-State Lett. 2004, 7, A93. https://doi.org/10.1149/1.1652421
  4. Beaulieu, L. Y.; Eberman, K. W.; Turner, R. L.; Krause, L. J.; Dahn, J. R. Electrochem. Solid-State Lett. 2001, 4, A137. https://doi.org/10.1149/1.1388178
  5. Lee, S. J.; Lee, J. K.; Chung, S. H.; Lee, H. Y.; Lee, S. M.; Baik, H. K. J. Power Sources 2001, 97-98, 191. https://doi.org/10.1016/S0378-7753(01)00761-3
  6. Kasavajjula, U.; Wang, C.; Appleby, A. J. J. Power Sources 2007, 163, 1003. https://doi.org/10.1016/j.jpowsour.2006.09.084
  7. Obrovac, M. N.; Krause, L. J. J. Electrochem. Soc. 2007, 154, A103. https://doi.org/10.1149/1.2402112
  8. Dimov, N.; Kugino, S.; Yoshio, M. Electrochim. Acta 2003, 48, 1579. https://doi.org/10.1016/S0013-4686(03)00030-6
  9. Ng, S.-H.; Wang, J.; Wexler, D.; Konstantinov, K.; Guo, Z.-P.; Liu, H.-K. Angew. Chem. Int. Ed. 2006, 45, 6896. https://doi.org/10.1002/anie.200601676
  10. Niu, J.; Lee, J. Y. Electrochem. Solid-State Lett. 2002, 5, A107. https://doi.org/10.1149/1.1472256
  11. Yang, J.; Wang, B. F.; Wang, K.; Liu, X. Y.; Wen, Z. S. Electrochem. Solid-State Lett. 2003, 6, A154. https://doi.org/10.1149/1.1585251
  12. Saint, J.; Morcrette, M.; Larcher, D.; Laffont, L.; Beattie, S.; Peres, J.-P.; Talaga, D.; Couzi, M.; Tarascon, J.-M. Adv. Funct. Mater. 2007, 17, 1765. https://doi.org/10.1002/adfm.200600937
  13. Esmanski, A.; Ozin, G. A. Adv. Funct. Mater. 2009, 19, 1999. https://doi.org/10.1002/adfm.200900306
  14. Kim, H.; Han, B.; Choo, J.; Cho, J. Angew. Chem. Int. Ed. 2008, 120, 10305. https://doi.org/10.1002/ange.200804355
  15. Hochgatterer, N. S.; Schweiger, M. R.; Koller, S.; Raimann, P. R.; Wöhrle, T.; Wurm, C.; Winter, M. Electrochem. Solid-State Lett. 2008, 11, A76. https://doi.org/10.1149/1.2888173
  16. Song, S.-W.; Baek, S.-W. Electrochem. Solid-State Lett. 2009, 12, A23. https://doi.org/10.1149/1.3028216
  17. Zhuang, G. V.; Ross, P. N., Jr. Electrochem. Solid-State Lett. 2003, 6, A136. https://doi.org/10.1149/1.1575594
  18. Ryu, Y.-G.; Lee, S.; Mah, S.; Lee, D. J.; Kwon, K.; Hwang, S.; Doo, S. J. Electrochem. Soc. 2008, 155, A583. https://doi.org/10.1149/1.2940310
  19. Choi, N. S.; Yew, K. H.; Lee, K. Y.; Sung, M.; Kim, H.; Kim, S.-S. J. Power Sources 2006, 161, 1254. https://doi.org/10.1016/j.jpowsour.2006.05.049
  20. Ulman, A. Chem. Rev. 1996, 96, 1533. https://doi.org/10.1021/cr9502357
  21. Striebel, K. A.; Deng, C. Z.; Wen, S. J.; Cairns, E. J. J. Electrochem. Soc. 1996, 143, 1821. https://doi.org/10.1149/1.1836910
  22. Song, S.-W.; Reade, R. P.; Cairns, E. J.; Vaughey, J. T.; Thackeray, M. M.; Striebel, K. A. J. Electrochem. Soc. 2004, 151, A1012. https://doi.org/10.1149/1.1758719
  23. Baek, S.-W.; Hong, S.-J.; Kim, D.-W.; Song, S.-W. J. Power Sources 2009, 189, 660. https://doi.org/10.1016/j.jpowsour.2008.09.035
  24. Song, S.-W.; Baek, S.-W. Electrochim. Acta 2009, 54, 1312. https://doi.org/10.1016/j.electacta.2008.09.021
  25. Zhuang, G. V.; Xu, K.; Yang, H.; Jow, T. R.; Ross, P. N., Jr. J. Phys. Chem. B 2005, 109, 17567. https://doi.org/10.1021/jp052474w
  26. Compton, S. V.; Compton, D. A. C. In Practical Sampling Techniques for Infrared Analysis; Coleman, P. B., Ed.; CRC Press: Boca Raton, FL, 1993.
  27. Han, D.; Lorentzen, J. D.; Weinberg-Wolf, J.; McNeil, L. E. J. Appl. Phys. 2003, 94, 2930. https://doi.org/10.1063/1.1598298
  28. Brodsky, M. H.; Cardona, M.; Cuomo, J. Phys. Rev. B 1977, 16, 3556. https://doi.org/10.1103/PhysRevB.16.3556
  29. Baranchugov, V.; Markevich, E.; Pollak, E.; Salitra, G.; Aurbach, D. Electrochem. Commun. 2007, 9, 796. https://doi.org/10.1016/j.elecom.2006.11.014
  30. Tuinstra, F.; Koenig, J. L. J. Chem. Phys. 1970, 53, 1126. https://doi.org/10.1063/1.1674108
  31. Colthup, N. B.; Daly, L. H.; Wiberley, S. E. Introduction to Infrared and Raman Spectroscopy; Academic Press: New York, 1990.
  32. Socrates, G. Infrared Characteristic Group Frequencies, Tables and Charts; John Wiley & Sons: New York, 1994.
  33. Spectral database for organic compounds SDBS, http://riodb01.ibase.aist.go.jp/sdbs
  34. Zhang, X.; Kostecki, R.; Richardson, T. J.; Pugh, J. K.; Ross, P. N., Jr. J. Electrochem. Soc. 2001, 148, A1341. https://doi.org/10.1149/1.1415547
  35. Xu, K. Chem. Rev. 2004, 104, 4303. https://doi.org/10.1021/cr030203g
  36. Aurbach, D.; Markovsky, B.; Shechter, A.; Ein-Eli, Y. J. Electrochem. Soc. 1996, 143, 3809. https://doi.org/10.1149/1.1837300
  37. Limthongkul, P.; Jang, Y.-I.; Dudney, N. J.; Chiang, Y.-M. Acta Materialia 2003¸ 51, 1103. https://doi.org/10.1016/S1359-6454(02)00514-1
  38. Schroeder, G.; Gierczyk, B.; Waszak, D.; Walkowiak, M. Electrochem. Commun. 2006, 8, 1583. https://doi.org/10.1016/j.elecom.2006.07.030
  39. Santner, H. J.; Korepp, C.; Winter, M.; Besenhard, J. O.; Moller, K.-C. Anal. Bioanal. Chem. 2004, 379, 266. https://doi.org/10.1007/s00216-004-2522-4
  40. Aurbach, D.; Moshkovich, M.; Cohen, Y.; Schechter, A. Langmuir 1999, 15, 2947. https://doi.org/10.1021/la981275j
  41. Matsuta, S.; Asada, T.; Kitaura, K. J. Electrochem. Soc. 2000, 147, 1695. https://doi.org/10.1149/1.1393420
  42. Zhuang, G. V.; Yang, H.; Blizanac, B.; Ross, P. N., Jr. Electrochem. Solid-State Lett. 2005, 8, A441. https://doi.org/10.1149/1.1979327
  43. Yang, H.; Zhuang, G. V.; Ross, P. N., Jr. J. Power Sources 2006, 161, 573. https://doi.org/10.1016/j.jpowsour.2006.03.058

Cited by

  1. Understanding the Interfacial Processes at Silicon–Copper Electrodes in Ionic Liquid Battery Electrolyte vol.116, pp.28, 2012, https://doi.org/10.1021/jp3019815
  2. Stabilized cycling performance of silicon oxide anode in ionic liquid electrolyte for rechargeable lithium batteries vol.2, pp.5, 2012, https://doi.org/10.1039/c2ra01183b
  3. Self-organized Artificial SEI for Improving the Cycling Ability of Silicon-based Battery Anode Materials vol.34, pp.4, 2013, https://doi.org/10.5012/bkcs.2013.34.4.1296
  4. Studies of Lithium Diffusivity of Silicon-Based Film Electrodes for Rechargeable Lithium Batteries vol.4, pp.3, 2013, https://doi.org/10.5229/JECST.2013.4.3.108
  5. High-Columbic-Efficiency Lithium Battery Based on Silicon Particle Materials vol.10, pp.1, 2015, https://doi.org/10.1186/s11671-015-1103-0
  6. Roles of Oxygen and Interfacial Stabilization in Enhancing the Cycling Ability of Silicon Oxide Anodes for Rechargeable Lithium Batteries vol.160, pp.6, 2013, https://doi.org/10.1149/2.118306jes
  7. Electrodes and Its Origins vol.161, pp.4, 2014, https://doi.org/10.1149/2.013404jes
  8. 계면안정화를 통한 Si-SiO2-흑연 복합재 음극의 전기화학적 특성 개선 vol.15, pp.3, 2010, https://doi.org/10.5229/jkes.2012.15.3.154
  9. Strategies for Building Robust Traffic Networks in Advanced Energy Storage Devices: A Focus on Composite Electrodes vol.31, pp.6, 2019, https://doi.org/10.1002/adma.201804204