DOI QR코드

DOI QR Code

A Comparative Analysis of Monofunctional Biosynthetic Peptidoglycan Transglycosylase (MBPT) from Pathogenic and Non-pathogenic Bacteria

  • Baker, Andrew T. (Department of Biological, Chemical and Physical Sciences, Roosevelt University) ;
  • Takahashi, Natsumi (Department of Biological, Chemical and Physical Sciences, Roosevelt University) ;
  • Chandra, Sathees B. (Department of Biological, Chemical and Physical Sciences, Roosevelt University)
  • Accepted : 2010.06.04
  • Published : 2010.06.30

Abstract

Monofunctional biosynthetic peptidoglycan transglycosylase (MBPT) catalyzes the formation of the glycan chain in bacterial cell walls from peptidoglycan subunits: N-acetylglucosamine (NAG) and acetylmuramic acid (NAM). Bifunctional glycosyltransferases such as the penicillin binding protein (PBP) have peptidoglycan glycosyltransferase (PGT) on their C terminal end which links together the peptidoglycan subunits while transpeptidase (TP) on the N terminal end cross-links the peptide moieties on the NAM monosaccharide of the peptide subunits to create the bacterial cell wall. The singular function of MBPT resembles the C terminal end of PBP as it too contains and utilizes a similar PGT domain. In this article we analyzed the infectious and non infectious protein sequences of MBPT from 31 different strains of bacteria using a variety of bioinformatic tools. Motif analysis, dot-plot comparison, and phylogenetic analysis identified a number of significant differences between infectious and non-infectious protein sequences. In this paper we have made an attempt to explain, analyze and discuss these differences from an evolutionary perspective. The results of our sequence analysis may open the door for utilizing MBPT as a new target to fight a variety of infectious bacteria.

Keywords

References

  1. Bailey, T.L., Williams, N., Misleh, C., and Li, W.W. (2006). MEME: discovering and analyzing DNA and protein sequence motifs. Nucl. Acids Res. 34, W369-373. https://doi.org/10.1093/nar/gkl198
  2. Barrett, D., Wang, T.S.A., Yuan, Y., Zhang, Y., Kahne, D., and Walker, S. (2007). Analysis of glycan polymers produced by peptidoglycan glycosyltransferases. J. Biol. Chem. 282, 31964-31971. https://doi.org/10.1074/jbc.M705440200
  3. Di Berardino, M., Dijkstra, A., Stuber, D., Keck, W., and Gubler, M. (1996). The monofunctional glycosytransferase of Escherichia coli is a member of a new class of peptidoglycan- synthesising enzymes. FEBS Letters 392, 184-188. https://doi.org/10.1016/0014-5793(96)00809-5
  4. Felsenstein, J. (1989). PHYLIP Phylogeny Inference Package. Cladistics 5, 164-166.
  5. Goffin, C., and Ghuysen, J.M. (1998). Multimodular penicillin- binding proteins: an enigmatic family of orthologs and paralogs. Microbiol. Mol. Biol. Rev. 62, 1079-1093.
  6. Landes, C., Henaut, A., and Risler, J. (1998). Dot-Plot comparison by multivariate analysis (DOCMA): A tool for classifying protein sequences. Bioinformatics 9, 191-196.
  7. Maurelli, A. (2006). Black holes, antivirulence genes, and gene inactivation in the evolution of bacterial pathogens. FEMS Microbiol. Lett. 267, 1-8.
  8. Page, R. (1996). TREEVIEW: An application to display phylogenetic trees on personal computers. Computer Applications in the Biosciences 12, 357-358.
  9. Paik, J., Jendrossek, D., and Hakenbeck, R. (1997). A putative monofunctional glycosyltransferase is expressed in Ralstonia eutropha. J. Bacteriol. 179, 4061-4065. https://doi.org/10.1128/jb.179.12.4061-4065.1997
  10. Rice, P., Longden, I. (2000). Emboss: the European Molecular Open Software Suite. Trends in Genetics 16, 276-277. https://doi.org/10.1016/S0168-9525(00)02024-2
  11. Sauvage, E., Kerff, F., Terrak, M., Ayala, J., and Charlier, P. (2008). The penicillin-binding proteins: structure and role in peptidoglycan biosynthesis. FEMS Microbiol. Rev. 32, 234-258. https://doi.org/10.1111/j.1574-6976.2008.00105.x
  12. Schierack, P., Steinruck, H., Kleta, S., and Vahjen, W. (2006). Virulence factor gene profiles of Escherichia coli isolates from clinically healthy pigs. Environmental Microbiology 72, 6680-6686. https://doi.org/10.1128/AEM.02952-05
  13. Schmidt, H., and Hensel, M. (2004). Pathogenicity islands in bacterial pathogenesis. Clin. Microbiol. Rev. 17, 14-56. https://doi.org/10.1128/CMR.17.1.14-56.2004
  14. Spratt, B.G. (1996). Monofunctional biosynthetic peptidoglycan transglycosylases. Mol. Microbiol. 19, 639-640. https://doi.org/10.1046/j.1365-2958.1996.442924.x
  15. Terrak, M., Sauvage, E., Derouaux, A., Dehareng, D., Bouhss, A., Breukink, E., Jeanjean, S., and Nguyen-Disteche, M. (2008). Importance of the conserved residues in the peptidoglycan glycosyltransferase module of the class A penicillin-binding protein 1b of Escherichia coli. J. Biol. Chem. 283, 28464-28470. https://doi.org/10.1074/jbc.M803223200
  16. Thompson, J., Gibson, T., Plewniak, F., Jeanmougin, F., and Higgins, D. (1997). The Clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl. Acids Res. 25, 4876- 4882. https://doi.org/10.1093/nar/25.24.4876
  17. Wagner, P., and Waldor, M.K. (2002). Bacteriophage control of bacterial virulence. Infection and Immunity 70, 3985- 3993. https://doi.org/10.1128/IAI.70.8.3985-3993.2002
  18. Yang, J., Chen, L., Sun, L., Yu, J., and Jin, Q. (2008). VFDB 2008 release: an enhanced web-based resource for comparative pathogenomics. Nucl. Acids Res. 36, D539-D542. https://doi.org/10.1093/nar/gkm1078
  19. Yuan, Y., Barrett, D., Zhang, Y., Kahne, D., Sliz, P., and Walker, S. (2007). Crystal structure of a peptidoglycan glycosyltransferase suggests a model for processive glycan chain synthesis. PNAS 104, 5348-5353. https://doi.org/10.1073/pnas.0701160104