Analysis on Characteristics of Sediment Produce by Landslide in a Basin 2. Rainfall Event-based Analysis

유역 내에서의 산사태에 의한 토사발생특성 분석 2. 강우사상별 분석

  • 유철상 (고려대학교 공과대학 건축.사회환경공학과) ;
  • 김기욱 (아팔라치안 주립대학 지질학과)
  • Received : 2010.03.01
  • Accepted : 2010.04.16
  • Published : 2010.06.30

Abstract

This study analyzed the characteristics of sediment produce by landslide triggered by rainfall. One-dimensional unsaturated groundwater model and infinite slope stability analysis were used to estimate the behavior of soil moisture and slope stability according to rainfall, respectively. Slope stability analysis was performed considering on soil depth and characteristics of trees. The results of the analysis on characteristics of sediment produce according to rainfall events showed that the sediment produce by landslide was mainly contributed to rainfall intensity and its temporal clustering. The results of the analysis on characteristics of sediment produce by extreme events showed that remaining rainfall amount of typhoon 'Rusa' was much more than that of the other extreme events, and thus this remaining rainfall was to contribute to sediment transportation. Additionally, only a small number of extreme events were found to cause most amount of sediment produce in a basin.

본 연구에서는 강우에 기인하는 산사태에 의한 토사발생특성을 분석하였다. 이를 위해 1차원 불포화 지하수해석을 수행하여 강우에 따른 토양수분의 거동을 추정하였으며, 무한사면해석법을 이용하여 토양수분상태에 따른 유역단위 사면안정해석을 수행하였다. 이 때, 산사태의 발생 및 파괴깊이에 영향을 주는 토양심 및 여러 식생인자들을 고려하였다. 강우사상의 특성에 따른 토사발생특성 분석 결과, 산사태에 의한 토사의 발생에는 강우강도와 강우의 시간적 군집상태가 결정적인 영향을 미친다는 것을 알 수 있었다. 극치강우에 의한 유역 내 토사발생특성 분석결과, 태풍 '루사' 시의 잔여강우량이 다른 극치사상들에 비하여 매우 크게 나타났으며, 이러한 잔여강우량이 발생된 토사의 운송에 기여하였을 것으로 파악되었다. 아울러, 소수의 극치강우에 의하여 발생한 토사량이 유역 내 전체 토사발생량의 많은 부분을 차지함을 알 수 있었다.

Keywords

References

  1. 국가수자원관리종합정보시스템(WAMIS) 홈페이지(www.wamis.go.kr)
  2. 국립방재연구소 (2003) 지리정보시스템을 이용한 사면붕괴 재해연구, pp.80.
  3. 박상덕 (2002) 태풍 루사로 인한 홍수특성과 대책. 한국수자원학회지, 한국수자원학회, 제35권, 제6호, pp.36-47.
  4. 신현석, 강두기, 최영돈, 갈병석 (2007) SWAT모형을 이용한 임하댐 유역 토사 유출 성향 분석 연구. 한국수자원학회 학술발표회 논문집, 한국수자원학회, pp.1920-1924.
  5. 유철상, 김기욱, 김성준, 이미선 (2010) 유역 내에서의 산사태에의한 토사발생특성 분석 1. 토사발생모의 및 검증, 한국방재학회논문집, 한국방재학회, 제10권, 제3호, pp.133-145
  6. 이수곤 (2002) 태풍 루사에 의한 피해현황 및 대책방안(산사태).대한토목학회지, 대한토목학회, 제50권, 제10호, pp.40-49.
  7. 이인모, 성상규, 임충모 (1991) 뿌리의 강도가 자연사면 안정에 미치는 영향에 관한 실험연구, 대한토질공학회지, 대한토질공학회, 제7권, 제2호, pp.51-66.
  8. 지병윤, 오재헌, 최병구, 전근우, 차두송 (2004) 수목의 근계구성에 따른 사면의 붕괴방지효과에 관한 연구(IV) - 잣나무 뿌리의 인장특성 -, 한국임학회지, 한국임학회, 제93권, 제1호, pp.103-107.
  9. Austin, S. A. (1994) Grand Canyon: Monument to catastrophe, Institute for Creation Research, California.
  10. Avanzi, G. D., Giannecchini, R., and Puccinelli, A. (2004) The Influence of the Geological and Geomorphological Settings on Shallow Landslides. An Example in a Temperate Climate Environment: the June 19, 1996 Event in Northwestern Tuscany( Italy). Engineering Geology, Vol. 73, pp.215-228. https://doi.org/10.1016/j.enggeo.2004.01.005
  11. Calcaterra, D. and Santo, A. (2004) The January 10, 1997 Pozzano Landslides, Sorrento Peninsula, Italy. Engineering Geology, Vol. 75, pp.181-200. https://doi.org/10.1016/j.enggeo.2004.05.009
  12. Cheng, J. D., Huang, Y. C., Wu, H. L., Yeh, J. L., and Chang, C. H. (2005) Hydrometeorological and Landuse Attributes of Debris Flow and Debris Floods during Typhoon Toraji, July 29-30, 2001 in Central Taiwan. Journal of Hydrology, Vol. 306, pp. 161-173. https://doi.org/10.1016/j.jhydrol.2004.09.007
  13. Chun, J. H., Lim, J. H., and Lee, D. K. (2007) Biomass Estimation of Gwangneung Catchment Area with Landsat ETM+ Image. Journal of Korean Forest Society, Vol. 96, No. 5, pp.591-601.
  14. Clapp, R. B. and Hornberger, G. M. (1978) Empirical Equations for Some Soil Hydraulic Properties. Water Resources Research, Vol 14, No. 4, pp.601-604. https://doi.org/10.1029/WR014i004p00601
  15. Guzzetti, F., Cardinali, M., Reichenbach, P., Cipolla, F., Sebastiani C., Galli, M., and Salvati, P. (2004) Landslides Triggered by the 23 November 2000 Rainfall Event in the Imperia Province, Western Liguria, Italy. Engineering Geology, Vol. 73, pp.229-245. https://doi.org/10.1016/j.enggeo.2004.01.006
  16. Istanbulluoglu, E., Tarboton, D. G., and Pack, R. T. (2003) A Sediment Transport Model for Incision of Gullies on Steep. Water Resources Research, Vol. 39, No. 4, 1103. https://doi.org/10.1029/2002WR001467
  17. Julien, P. Y. and Simons, D. B. (1985) Sediment Transport Capacity of Overland Flow. Transactions of American Society of Agricultural Engineers, Vol. 28, No. 3, pp.755-762. https://doi.org/10.13031/2013.32333
  18. Kirchner, J. W., Finkel, R. C., Riebe, C. S., Granger, D. E., Clayton, J. L., King, J. G., and Megahan, W. F. (2001) Mountain Erosion over 10 yr, 10k.y., and 10 m.y. Time Scales. Geology, Vol. 29, No. 7, pp.591-594.
  19. Meyer, G. A., Pierce, J. L., Wood, S. H., and Jull, A. J. T. (2001) Fire, Storms, and Erosional Events in the Idaho Batholith. Hydrological Processes, Vol. 15, pp.3025-3038. https://doi.org/10.1002/hyp.389
  20. Nearing, M. A., Norton, L. D., Bulgakov, D. A., Larinov, G. A., West, L. T., and Dontsova, K. M. (1997) Hydraulics and Erosion in Eroding Rills. Water Resources Research, Vol. 33, No. 4, pp.865-876. https://doi.org/10.1029/97WR00013
  21. Perkins, S. (2000) The Making of a Grand Canyon: Carving this beloved hole in the ground may not have been such a long-term project. Science News, Vol. 158, Iss. 14, pp.218-220. https://doi.org/10.2307/4018671
  22. Prosser, I. P. and Rustomji, P. (2000) Sediment Transport Capacity Relations for Overland Flow. Progress in Physical Geography, Vol. 24, No. 2, pp.179-193. https://doi.org/10.1177/030913330002400202