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Promising Advantages and Potential Pitfalls of Reliance on
Technology in Learning Algebra
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In a rapidly changing and increasingly technological society, the wuse of
technology should not be disregarded in issues of learning algebra. The use of
technology in learning algebra raises many learning and pedagogical issues. In this
article, previous research on the use of technology in learning algebra is
synthesized on the basis of the four issues: conceptual understanding, skills,
instrumental genesis, and transparency. Finally, suggestions for future research into
technological pedagogical content knowledge (TPCK) are made.
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I. INTRODUCTION

The use of technology in mathematics education raises many learning and pedagogical
issues. Effective use of technology in the classroom may have enormous benefits for
student understanding. However, technologies have many characteristics that make them
complex tools for teachers and students to use correctly, creatively and efficiently. The
skills necessary for effective technology use not necessarily the same as those required
for traditional paper-and-pencil work. The process of learning with the use of
technology i1s a slow and difficult one. Underlying these issues is the complex
relationship among the student, the technology, and the mathematics. In what follows,
the first section describes how the effective use of technology enhances students’
conceptual understanding in learning algebra while the other sections offer potential
hazards that can prevent students accessing technology's effectiveness. The second
section addresses skills that students need to develop for the effective use of technology.
The third section illustrates the different levels of facility that students can have with
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technology based on the process of instrumental genesis. In the fourth section, 1 will
discuss the issue of transparency in the use of technology. Finally, I will synthesize the
ideas coming from promising advantages and potential pitfalls of the use of technology
in learning algebra for future study.

II. ENHANCING CONCEPTUAL UNDERSTANDING

There are many leamning issues related to technology. One issue is the changing
student role. Another is a change in the nature of the mathematics students are taught.
Under the changing student role, we can consider concept image, experimental aspects,
dynamic aspects, modeling, student attitude, and reification. Also there are many
features related to content and processes in mathematics for the nature of mathematics
(Olds, Schwartz, & Willie, 1980). Since there are close relationships among all of these
learning issues, the relationship between technology and conceptual understanding in
relation to the function concept will be the focus of the discussion below.

1. Concept Image

First of all, the concept image that students can develop as a result of technology can
improve students’ conceptual understanding. Goldenberg (1988) posed the following
problem: “Find the value of x in the equation 4x - 17 = 4x - 4.” As Goldenberg
points out, many students added -4x + 4 to both sides of the equation and conclude,
after getting 0 = -13, that -13 is the only number left and then x equals -13.
Students who have learned to visualize the graphic representations of each symbolic
expression do not have this problem because they have a strong visual sense of two
functions f(x) = 4x - 17 and g(x) = 4x - 4. Students using technology developed
concept images of these functions as parallel and realized that therefore they do not
intersect. Concept image can be well developed in technology and helps students have a
deeper conceptual understanding of function. In general, manipulating multiple
representations with the help of technology can become one of promising learning
environments for students to study various algebra concepts.

2. Experimental Aspects

The experimental aspects of mathematics that can result from using dynamic
representations provided by technology can improve students conceptual understanding.
In order to do the problem in figure 1, students need to know the graphic
representations of linear equations with the same slope, the meaning of linear equations
with the different y-intercepts and the relationships among these lines. In this problem,
students can get a deeper conceptual understanding about the slope, y-intercept, and the
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concept of parallel of linear equations by trial and error with the help of technology.
Such experiments, which are difficult without technology, can help students explore
deeper concepts that are related to functions instead of memorizing equation forms and
formulas. Therefore, the exploratory and inductive aspects of dynamic representations
emphasize the heuristics involved in discovering results. In addition, the transition from
an intuitive view to a theoretical one is greatly facilitated by the use of technology.
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Problem: Use your graphing calculator to
recreate the pattern by entering the
appropriate linear equations, y =mx + b.

[Figure 1] Sample graphing calculator exercise.
Adopted from activities published by Dan Ethier, Mounds Park Academy, St. Paul, MN.

3. Dynamic Aspects

Dynamic systems of technology also can improve students conceptual understanding.
As Forster and Taylor (2000) point out, when students looked at a function using
technology, they saw it as part of a generalized equation, instead of evaluating only
fixed expressions such as f(4) = -1. In addition, they saw a dynamic movement that is
impossible without technology. For instance, instead of learning only how to produce the
inverse to a function, students locked at the relationship between a function and its
inverse through the use of dynamic properties of technology. They can see the
relationship between coordinates of points on the function and on its inverse. Dynamic
properties of technology can assist students to see a deeper relationship between two
concepts and have a deeper conceptual understanding of the inverse function.

4. Modeling

Students can achieve a better conceptual understanding of functions through the
processes of modeling, interpreting, and translating in relation to technology
(O'Callaghan, 1998; 7=, 2005, 174 - 3157, 2007, ol&d=F - vt&& - A A, 2009; g
= - A dA, 2008). As Nemirovsky (1996) points out, a modeling perspective of algebra,
we need to consider the modeling of physical and mathematical phenomena to make the
meaning of algebra meaningful. Because of the availability of graphing calculators, a
graphical-approach curriculum can include examples and problems for modeling
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real-world situations with functions that would be either too time-consuming or
impractical without a graphing calculator (Hollar and Norwood, 1999). Students also can
have both the ability to create equations, tables, and graphs quickly and the facility to
move among the representations rapidly with the help of graphing calculators. There are
mutually supportive relationships between modeling or interpreting in strategic
competence and conceptual understanding. So, conceptual understanding of function can
be improved by modeling a real-world situation using a function, interpreting a function
in terms of a realistic situation, and translating among different representations of
functions with the help of technology. Students can improve their conceptual
understanding by modeling, interpreting, and translating with the help of technology. In
addition, the modeling and interactive aspects of technology can help students develop
together integration of multiple representations of the same concept.

5. Attitude

O’Callaghan (1998) also found that students in the Computer-Intensive Algebra (CIA)
curriculum significantly improved their attitudes toward mathematics over the semester
(see also a4 - o|®HE 2004, AJE - AsE - =9 - 9, 2003, &#HIA - 171,
2006). Positive attitudes toward mathematics led students to have more confidence in
their knowledge and ability and a stronger belief that mathematics is understandable. In
the long run, these attitudes can help students’ conceptual understanding. As adding it
up points out, most preschoolers enter school interested in mathematics and motivated to
learn it. The challenge to educators is to help them maintain a productive disposition
toward mathematics. The free environment that technology provides can also give
powerful motivation for students, but the ability to use errors constructively needs to be
reawakened in most school children. The use of technology in learning mathematics has
the potential for changing students’ attitudes toward how they learn mathematics and
their behavior in classrooms.

6. Reification

Finally, technology may facilitate the reification of the function concept since it can
help in making the transition from an operational to a structural understanding of a
concept (Hollar and Norwood, 1999)2. As Kieran (1993) points outf, a function can be
thought of in two ways: operationally as a process and structurally as an object. Hollar
and Norwood suggest that if students would have more opportunities with the graphing

2) Hollar and Norwood’s particular claims about students’ improvement in reification are based on
questionable statistical assumptions. However, their general claims about the possible effects of
graphing technology and, in particular, of the relative merits of handheld technology over
computer—-based implementations, are both plausible and intriguing.
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calculator to explore functions and to examine abstract applications, they may
demonstrate significantly better reification of function. Reification is a difficult process
and involves high degree of abstraction. If technology can be used more often and
appropriately, students can obtain a more complex and abstract conceptual understanding
with the help of technology. Therefore, the graphical possibilities of technology can
allow a reification of abstract algebraic concepts.

Technology can assist students in forming deeper conceptual understanding. The
processes that are well developed with the help of technology can help students obtain
better conceptual understanding. Concept image, experimental features, dynamic aspects,
modeling, and reification, and students’ positive attitude toward mathematics, can be a
part of those contributions to student conceptual understanding.

ITI. SKILLS

When incorporating technology in classrooms, teachers need to adapt to the changes
caused by the technology. Teachers need to understand not only how to use technology
but also how to change their practice in order to promote student learning in
mathematics. Students also need to develop new skills to succeed in a classroom that
employs technology. Many of the traditional skills are not important any longer. For
instance, plotting points in order to graph functions is not a skill that students need to
master because the graphing technology will plot functions for them. Instead, the
student needs to develop new skills for dealing with graphs like estimation, interpreting
information from a graph, and interpreting the output of technology. Recognizing that it
1s not possible to capture completely all aspects of skills that students need to develop
in the use of technology, 1 have chosen three skills to capture what I believe is
necessary for anyone to learn mathematics in the use of technology successfully:
estimation skills, skills needed to interpret the output of technology, and skills needed to
interpret the window of technology.

1. Estimation skills

Molyneax-Hodgson et al. (1999) did a study on spreadsheets and solution skills in
Mexico and Britain. They found before the technology was introduced, a presentational
teaching (Mexican) led to desire for precise answers by way of algorithmic manipulation
of expressions while exploratory teaching (British) led to more estimation from a graph.
Through the use of computer spreadsheets, students represented data using graphs,
tables, and functions. After the study, British students were using expressions to find
precise answers more than before. Likewise, more Mexican students were using graphs
and giving estimates. The Mexican students saw that finding a precise answer was not
always necessary, and that approximation was a useful skill to have. In this way using
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the spreadsheets helped students develop the need for estimation and approximation
skills as well as improving those skills. In addition to approximating skills, students can
also need to improve their ability to present exact calculation in Computer Algebra
Systems (CAS) (see Artigue, 1999; Heid, 1999; Heid, 2001; and O’Callahan, 1998 for CAS
research studies)

2. Skills needed to interpret the output of technology

Lindsay (1999) reported on a study where students used the CAS Derive. Only 18%
of the students using the CAS were able to answer two questions about slope of the
tangent and normal at a point on a cubic polynomial. The largest problem here was that
the CAS had functions called “TANGENT” and “PERPENDICULAR” which outputted
the tangent [line and the normal [ine, not only the slopes of those lines. The most
12—z

T
The students had to interpret the output of the CAS to find the slopes of each line, 9

frequent response to the question was the output of the CAS: 9 - x—26 and

1 .
and — 9 respectively. In other words, students need to be able to use the output of the

technology for solving problems and making informed decisions. This is an important
skill for students to use a variety of technology outputs to communicate information and
ideas with others.

3. Skills needed to interpret the window of technology

Another kind of skill that is important is interpreting what has been graphed with
respect to the viewing window. This is a skill that must be developed because students
do not naturally interpret what is seen in a window. Goldenberg (1988) points this out
when talking about looking through a window. If one sees a person outside a window,
one knows that a roughly six foot tall person is immediately outside the window and it
is not a 240 foot person forty feet away. In this manner students will not see that the
lines in the two windows in figure 2 are the same line. The line on the right appears
closer to the origin than is the line on the left, which tells students they have different
y-intercepts. Because the students are not taking into account the dimensions of the
window, they see two different lines.

A further example of window interpretation comes when looking at lines. If the
windows are not the same shape, lines will appear to have different slopes. In the pair
of windows in figure 3, students typically viewed the lines on the left to have a smaller
slope. There are two reasons for this. First, because the lines between the corners are
longer on the left, the slope was seen to be smaller. Second, because of the rectangular
shape of the window juxtaposed to the square window, a visual illusion is created
which makes the lines on the left appear to have a smaller slope when, in fact, all four
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lines have the same slope.
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[Figure 2] The line y = -x-1 at two different zoom levels. Adapted from Goldenberg
(1988), “Mathematics, metaphors, and human factors: Mathematical, technical, and
pedagogical challenges in the educational use of graphical representation of functions,”
Journal of Mathematical Behavior.

[Figure 3] Four parallel lines in two different-shaped windows. Adapted from
Goldenberg (1988).

Another visual illusion that happens is in the translation of lines. Students typically
see the pair of lines on the left of figure 4 as a vertical shift and the pair on the right
as a horizontal shift. How students viewed the translation depended on the slope. Slopes
with absolute value smaller than one appeared as vertical shifts. If the absolute value of
the slope is larger than one the translation was thought to be horizontal. Lastly, if the
absolute value is around one, then students perceived the shift to be diagonal (See
figure 5).

There are a variety of skills that a student needs to develop in a technology-centered
classroom. Some of the skills previously taught in school will no longer be a focal skill.
Students need to demonstrate a sound understanding of the nature and operation of
technology systems and they also need to be proficient in the use of technology in
classrooms. The focus of classrooms that use technology should be on conjecturing and
modeling, on approximation and estimation, and on interpretation.
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[Figure 5] Translation of a line viewed as diagonal, vertical, and horizontal shift.
Adapted from Goldenberg (1988).

IV. INSTRUMENTAL GENESIS

The different technologies that students are introduced to in mathematics classrooms
are artifacts, in that they are human-made tools. An artifact does not automatically
become an instrument, something that can be used to increase student understanding (in
this case mathematical understanding), merely through exposure. Many researchers have
mentioned a process called instrumental genesis which transforms an artifact into an
instrument (see, e.g., Guin and Trouche, 1999; Artigue, 2001; FH& - °o]X A, 2008).
Instrumental genesis is a process by which students’ schemes for working with an
artifact develop, adapt and assimilate. The development of instrumental genesis has both
social and individual components. The individual component is a result of students’
schemes being mental constructs of an individual. The social component considers the
effect that teachers and other students have in this process. In particular, teachers play
an Important role and are faced with many complexities while trying to develop
instrumental genesis in their students. Due to their high accessibility and current and
increasing popularity in mathematical research and instruction, hand-held graphing
technologies and CAS will be used to illustrate how a teacher can students move
through this process.

The process of instrumental genesis has been described as having different phases.
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Students may start first by using pre—existing schemes and then adapt their schemes
depending on the task or the activity. Guin and Trouche (1999) saw instrumental
genesis as two phases: the discovery phase and the organization phase. In the discovery
phase, students explored the effects and organization of various commands. Students in
the organization phase had more skepticism of calculator-produced answers and gave
less authority to calculator. In relation to her research on CAS, Artigue (2001) mentions
three phases. In the first phase, graphical representations are predominant in exploring
and solving and the symbolic HOME screen rarely used. In second phase, the HOME
screen 1s beginning to be used more and by the third phase, students use the symbolic
HOME screen predominantly, while they interweave paper and pencil methods. In this
third phase, the graphical applications are used mostly in problem solving to anticipate
the analytical properties of functions. As students worked with the CAS, they came to
value the CAS’s capacity to perform analytic skills efficiently.

After conducting research involving the role teaching plays in how students use of
technology, Lagrange (1999) commented that in order “for the support of the technology
to be effective, teachers must control student’s development of utilization schemes”
(1999, p. 62). Lagrange’s conclusion that teachers play a vital role in the
instrumentalization process is shared by other researchers (see e.g., Artigue, 2001, Goos,
Galbraith, Renshaw, & Geiger, 2000; Guin and Trouche, 1999). But how does a teacher
go about fostering instrumentalization? Since schemes are internal constructs particular
to individuals, they cannot be taught explicitly. Teachers can help students develop their
schemes by introducing mathematical tasks that raise student awareness of the
constraints and limitations involved in the technology and by teaching students
techniques for wusing technology in mathematical problem solving. However it is
important to pair rational reflection with student usage of these techniques, since this
reflection is what can lead to students to acquire conceptual understanding as opposed
to just manipulative skills (Lagrange, 1999, p. 63).

Mathematical tasks can be used by teachers to help students develop their
instrumental schemes. Guin and Trouche (1999) noted that in France students had to
learn the skills to obtain and read graphs on their own. If students are left to fend for
themselves when technology is concerned, misconceptions may result. One misconception
Guin and Trouche found was that students believed that the asymptotes depicted on the
computer screen in a representation of the graphs y=tan(z) created additional
intersection points with the graph of y=x. This task is an example of one way to talk
to students about the calculator representations for asymptotes and maybe about
continuity and discreteness issues. There are other tasks involving the discreteness issue
of graphic displays. Artigue (2001) mentions one task where students are shown a
function that appears monotonic in the display, however upon zooming-in many
oscillations appear. Students are asked to find ways to reproduce this phenomenon. This
task incorporates student understandings about function, about the characteristics of the
technology they are using and about the discreteness issue. Another issue that teachers
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should address is that students who always study functions in a standard window may
not notice the variation in the function. An example of a task that be used to give
students an opportunity to adapt this scheme of graphing in the standard window is to
ask students to graph the function f(z)= i 12x2+46—42, which when graphed in
the standard window appears to be a linear function. This task can illustrate the
importance of examining functions analytically.

Since there are many idiosyncrasies involved in the way simplification occurs in
internally with CAS, tasks involving equivalent expression formulation and recognition
are especially important. For example, the CAS will factor the two equivalent
expressions 1—(1—2z)B3+2z)—2 and 1—2z—(1—2)(3+22) in two different ways
22" —2 and 2(z—1)(z+1). Lagrange (1999) stressed this issue of students recognizing

equivalent forms. On task he mentioned was to have student differentiate 3cos (3z— %)

by hand and then check with the TI-92. The TI-92 produced the result of

3cos 3z + %). Only 8 out of 26 students recognized that they could use the property,

cos (a+ %) =—sin(a+ %) to simplify their paper and pencil result of — 3sin(3z— %). A

task like this can help guide students to make sense of calculator produced answers and
to question why the answers are of a different form. Also, this task is an example of
where pencil and paper can be used with instrumented techniques. Complementary tasks
using paper and pencil techniques with instrumented techniques are encouraged (Artigue,
2001; Trouche and Guin, 1999). It is important to help students see the mathematics
behind calculator-produced results. Artigue (2001) and Guin and Trouche (1999)
mentioned organizational, internal and command constraints of CAS that teachers must
be aware of and help students develop their own awareness. Through different
experiences, such as those with the tasks mentioned above, teachers can explore these
constraints with their students.

Guin and Trouche (1999) claimed, “It is only through a complex process that students
will be able to combine different available sources of information (theoretical text, a
calculator, calculation by hand) to construct their own mathematical understanding.”
Students develop different relationships with graphing and symbolic calculators. As a
result, teachers are working with a diverse group of students that vary in how
competent they feel in mathematics and in using technology and vary in the strategies
they use in problem solving. In order to look at the ways student behavior changed as
a result of CAS usage, Guin and Trouche (1999) defined five student behavioral profiles
based on accounts of their subjects previous graphing calculator experiences and their
subjects main behavioral features: include random work, mechanical work, resourceful
work, rational work and theoretical work. Guin and Trouche found that students in the
rational work and theoretical work profiles chose more productive strategies and sought
mathematical consistency between all information tools such as theoretical, paper and
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pencil and calculator.

Goos et. al. (2001) conducted a 3-year longitudinal study that investigated the role of
graphing calculators and computers in supporting the mediation social interactions and
focused on pedagogical issues. Varying degrees of sophistication with technology were
categorized using 4 metaphors: master, servant, partner and extension of self. These are
different from the profiles of behavior, in that they incorporate ways of talking about a
person’s individual interactions with technology, interactions among students using
technology and interactions between teacher and student using technology. However both
the profiles of behavior and the four metaphors illustrate the different levels of facility
students can have with technology. These different levels create complexities for
teachers in the coordination of activities and in the development of instrumental genesis
in their students.

V. TRANSPARENCY

Any use of technology for learning necessarily will be implemented using a particular
technological tool. Clearly not all tools are created equal, and the effectiveness of any
technology-based intervention will be at least in part dependent on the specific tool or
tools chosen. The ‘“extent to which the technology being used highlights the
mathematics that is being studied rather than ohscures it” is called transparency (Heid,
1997, p. 7). A tool becomes transparent when it allows the user to forget its role and to
believe he or she is interacting directly with the mathematics.

Heid's definition appears to position transparency as a feature of the technological tool
itself —that a particular device is more or less transparent depending on its features.
Meira (1998) cautions that this is not the case, but rather that transparency is a cultural
product of the interaction of the tool with a particular individual in a specific social
context. In other words, transparency is not about the tool per se, but about the
relationship between the tool and the user at a particular time and in a particular
context.

Hancock (1995) extends the notion of transparency as a cultural product by
suggesting the dialectic of transparency. This explication emerges from Hancock's
examination of students’ struggles with a particular database tool. Students hegan by
viewing the program through the lens “naive transparency,” where the tool is assumed
by the user to share his or her own meaning for the offered representations. In this
case, given names (e.g., “John,” “Mary”) entered into a database were viewed by the
students as gendered. When the students were unable to make the program distinguish
between hoys and girls based on the given name, they reached a state of “opacity,”
where their interpretation of the representation was brought into clear conflict with what
the computer was able to do. As they came to some understanding of how the program
treats character strings, thereby resolving the conflict, the students achieved “coordinated
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transparency,” in which they were able to negotiate rather fluently hetween their own
interpretation of the representation and the tool’s.

In spite of this clearly individualized notion of transparency, it seems obvious that
some technology is better suited to the promotion of transparency than others. Hancock
acknowledges this, and proposes that any tool be treated as curriculum. Just as with
technology, the interaction between student and curriculum (be it intended or enacted) is
always necessarily individualized, but developers and implementers nevertheless place
great stock in particular features of a particular curriculum to promote certain kinds of
learning better than other possible features of other possible curricula.

Along these lines, Hancock offers three aspects of technology that should be
considered both by developers and by implementers of technology. First, he suggests
that like other curricula, a tool be judged “for its accessibility and interest to children,
its cultural significance, [and] its contribution to intellectual and social empowerment” (p.
237). Second, he proposes that the tool be judged on the implicit mathematics it
embodies, and that this be judged on form, content, coherence, and developmental
appropriateness. Finally, he asserts that “where the mathematics of a -+ tool is judged
worthwhile, it needs to be integrated into the accepted body of mathematics curriculum
[which] may entail some reorganization of topics and branches of mathematics” (p. 239).

VI. CONCLUDING REMARKS

I tried to do a synthesis in order to put together the ideas coming from previous
research on the use of technology in learning algebra on the basis of the four issues:
conceptual understanding, skills, instrumental genesis, and transparency. Using
technology in the classroom implies many things. In addition to the promising advantage
of enhancing conceptual understanding, there are many learning issues related to
technology such as changes in the nature of mathematics as well as in the roles in a
learning context. The mathematics that can be covered is centered in real-world
examples and more opportunities for deeper student understanding. The role of the
student changes towards experimenter. The types of skills that the students learn need
to change to put less focus on functions that the technology can easily perform and
incorporate new skills to deal with what the technology cannot tell the student.
However, the development of instrumental genesis from an artifact is complicated. In
addition, technology should be transparent in order to be integrated into the mathematics
that students interact with. To make the appropriate changes teachers need to consider
the interactions between the students with the technology, and also the curriculum with
the technology. These are some of the important issues to look at when implementing
the use of technology in the classroom.

In a rapidly changing and increasingly technological society, the use of technology
should not be disregarded in issues of learning algebra in particular and mathematics in
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general. It 1s important to dig further into the complex field of the use of technology in
mathematics education and seek for practical and heuristic connections among the
categories, as discussed above. However, mathematical learning cannot be fully
understood without contemplation of the contribution made by a teacher, students,
mathematical content, and their interaction within environments. Thus, the approach to
teaching students algebra through technology should be developed and characterized on
the basis of solid theories of mathematical learning. However, the amount of previous
research on teaching algebra through technology is minimal. Future research into the
strengths and weaknesses of technology implementation in learning algebra (and
mathematics) and their relationships with teaching is critical for being able to better
student understanding of the nature of mathematics, increase reasoning abilities, and
improve dispositions toward the subject. In particular, technological pedagogical content
knowledge (TPCK) is possibly one of the areas in need of research attention in learning
algebra through technology.
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