DOI QR코드

DOI QR Code

Antimicrobial and Antioxidant Properties of Secondary Metabolites from White Rose Flower

  • Joo, Seong-Soo (Research Institute of Veterinary Medicine, Chungbuk National University) ;
  • Kim, Yun-Bae (Research Institute of Veterinary Medicine, Chungbuk National University) ;
  • Lee, Do-Ik (Department of Immunology, Chung-Ang University)
  • Received : 2009.10.12
  • Accepted : 2009.12.31
  • Published : 2010.03.01

Abstract

Low-molecular-weight secondary metabolites from plants play an important role in reproductive processes and in the defense against environmental stresses or pathogens. In the present study, we isolated various volatiles and phenolic compounds from white Rosa rugosa flowers, and evaluated the pharmaceutical activities of these natural products in addition to their ability to increase survival in response to environmental stress and pathogen invasion. The DPPH and hydroxyl radical-mediated oxidation assay revealed that the white rose flower extract (WRFE) strongly scavenged free radicals in a dose dependent manner. Moreover, WRFE inhibited the growth of E. coli and fatally attacked those cells at higher concentration (>0.5 mg/mL). FITC-conjugated Annexin V stain provided further evidence that WRFE had strong antimicrobial activity, which may have resulted from a cooperative synergism between volatiles (e.g. 1-butanol, dodecyl acrylate and cyclododecane) and phenolic compounds (e.g. gallic acid) retained in WRFE. In conclusion, secondary metabolites from white rose flower hold promise as a potential natural source for antimicrobial and non-chemical based antioxidant agents.

Keywords

References

  1. Argolo, A. C. C., Sant’Ana, A. E. G., Pletsch, M. and Coelho, L. C. B. B. 2004. Antioxidant activity of leaf extracts from Bauhinia monandra. Bioresour. Technol. 95:229-233. https://doi.org/10.1016/j.biortech.2003.12.014
  2. Bishop, C. D. 1995. Antiviral activity of the essential oil of Melaleuca alternifolia (Maiden and Betche) Cheel (tea oil) against tobacco mosaic virus. J. Essent. Oil. Res. 7:641-644. https://doi.org/10.1080/10412905.1995.9700519
  3. Carson, C. F., Mee, B. J. and Riley, T. V. 2002. Mechanism of action of Melaleuca laternifolia (tea tree) oil on staphylococcus aureus determained by time-kill, lysis, leakage and salt tolerance assays and electron microscopy. Antimicrob. Agents Chemother. 46:1914-1920. https://doi.org/10.1128/AAC.46.6.1914-1920.2002
  4. Dangl, J. L. and Jones, J. D. 2001. Plant pathogens and integrated defence responses to infection. Nature 411:826-833. https://doi.org/10.1038/35081161
  5. Davidson, P. M. 1997. Chemical preservatives and natural antimicrobial compounds. In: Food microbiology fundamentals and frontiers, ed. by M. P. Doyle, L. R. Beuchat and T. J. Montville, pp. 520-556. American Society for Microbiology Press, Washington (DC).
  6. De Moraes, C. M., Mescheer, M. C. and Tumlison, J. H. 2001. Caterpillar-induced nocturnal plant volatiles repel nonspecific females. Nature 410:577-580. https://doi.org/10.1038/35069058
  7. Denyer, S. P. and Hugo, W. B. 1991. Biocide-induced damage to the bacterial cytoplasmic membrane. In: Mechanisms of action of chemical Biocides: The Society for Applied Bacteriology, Technical Series No 27, ed. by S. P. Denyer and W. B. Hugo, pp. 171-188. Oxford Blackwell Scientific Publication, Oxford.
  8. Dixon, R. A. 2001. Natural products and plant disease resistance. Nature 411:843-847. https://doi.org/10.1038/35081178
  9. Dudareva, N. and Pichersky, E. 2000. Biochemistry and molecular genetic aspects of floral scents. Plant. Physiol. 122:627-633. https://doi.org/10.1104/pp.122.3.627
  10. Dudareva, N. and Pichersky, E. 2008. Metabolic engineering of plant volatiles. Curr. Opin. Biotechnol. 19:181-189. https://doi.org/10.1016/j.copbio.2008.02.011
  11. Hammer, K. A., Carson, C. F. and Riley, T. V. 2003. Antifungal activity of the components of Melaleuca alternifolia (tea tree) oil. J. Appl. Microbiol. 95:853-860. https://doi.org/10.1046/j.1365-2672.2003.02059.x
  12. Harborne, J. B. 2001. Twenty-five years of ecology. Nat. Prod. Rep. 18:361-379. https://doi.org/10.1039/b005311m
  13. Hotta, H., Nagano, S., Ueda, M., Tsujino, Y., Koyama, J. and Osakai, T. 2002. Higher radical scavenging activities of polyphenolic antioxidants can be ascribed to chemical reactions following their oxidation. Biochim. Biophys. Acta 1572:123-132. https://doi.org/10.1016/S0304-4165(02)00285-4
  14. Hsieh, M.-C., Shen, Y.-J., Kuo, Y.-H. and Hwang, L. S. 2008. Antioxidative activity and active components of Longan (Dimocarpus longan Lour.) flower extracts. J. Agric. Food Chem. 56:7010-7016. https://doi.org/10.1021/jf801155j
  15. Jang, H.-W., Ka, M.-H. and Lee, K.-G. 2008. Antioxidant activity and characterization of volatile extracts of Capsicum annuum L. and Allium spp. Flavour. Fragr. J. 23:178-184. https://doi.org/10.1002/ffj.1872
  16. Karban, R., Baldwin, I. T., Baxter, K. J., Laue, G. and Felton, G. W. 2000. Communication between plants: induced resistance in wild tobacco plants following clipping of neighboring sagebrush. Oecologia 125:66-71. https://doi.org/10.1007/PL00008892
  17. Mari, M., Bertolini, P. and Pratella, G. C. 2003. Non-conventional methods for the control of post-harvest pear diseases. J. Appl. Microbiol. 94:761-766. https://doi.org/10.1046/j.1365-2672.2003.01920.x
  18. Mayo, J. C., Tan, D. X., Sainz, R. M., Natarajan, M., Lopez-Burillo, S. and Reiter, R. J. 2003. Protection against oxidative protein damage induced by metal-catalyzed reaction or alkylperoxyl radicals: comparative effects of melatonin and other antioxidants. Biochim. Biophys. Acta. 1620:139-150. https://doi.org/10.1016/S0304-4165(02)00527-5
  19. Nychas, G. J. E. 1995. Natural antimicrobials from plants. In: New Methods of Food Preservation, ed. by G. W. Gould, pp. 58-89. Blackie Academic and professional, Glasgow.
  20. Pichersky, E. and Gang, D. R. 2000. Genetics and biochemistry of secondary metabolites in plants: an evolutionary perspective. Trends Plant Sci. 5:439-445. https://doi.org/10.1016/S1360-1385(00)01741-6
  21. Sanchez-Moreno, C., Larrauri, J. A. and Saura-Calixto, F. 1999. Free radical scavenging capacity an inhibition of lipid oxidation of wines, grape juices and related polyphenolic constituents. Food Res. Int. 32:407-412. https://doi.org/10.1016/S0963-9969(99)00097-6
  22. Sikkema, J., De Bont, J. A. M. and Poolman, B. 1994. Interactions of cyclic hydrocarbons with biological membranes. J. Biol. Chem. 269:8022-8028.
  23. Sikkema, J., De Bont, J. A. M. and Poolman, B. 1995. Mechanisms of membrane toxicity of hydrocarbons. Microbiol. Rev. 59:201-222.
  24. Strobel, G. A., Dirkse, E., Sears, J. and Markworth, C. 2001. Volatile antimicrobials from Muscodor albus, a novel endophytic fungus. Microbiology 147:2943-2950. https://doi.org/10.1099/00221287-147-11-2943
  25. Vranova, E., Inze, D. and Van Breusegem, F. 2002. Signal transduction during oxidative stress. J. Exp. Bot. 53:1227-1236. https://doi.org/10.1093/jexbot/53.372.1227
  26. Zhao, J., Davis, L. C. and Verpoorte, R. 2005. Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnol. Adv. 23:283-333. https://doi.org/10.1016/j.biotechadv.2005.01.003

Cited by

  1. Production of commercially important secondary metabolites and antioxidant activity in cell suspension cultures of Artemisia absinthium L. vol.49, 2013, https://doi.org/10.1016/j.indcrop.2013.05.033
  2. Neuroprotective Effects of a Butanol Fraction of Rosa hybrida Petals in a Middle Cerebral Artery Occlusion Model vol.21, pp.6, 2013, https://doi.org/10.4062/biomolther.2013.067
  3. Antimicrobial activities of ethanol and butanol fractions of white rose petal extract vol.76, 2016, https://doi.org/10.1016/j.yrtph.2016.01.011
  4. Anti-Inflammatory Effects of Hexane Fraction from White Rose Flower Extracts via Inhibition of Inflammatory Repertoires vol.19, pp.3, 2011, https://doi.org/10.4062/biomolther.2011.19.3.331
  5. Aurone Constituents from the Flowers of Rosa rugosa and Their Biological Activities vol.85, pp.8, 2012, https://doi.org/10.3987/COM-12-12505
  6. Elicitation of Medicinally Important Antioxidant Secondary Metabolites with Silver and Gold Nanoparticles in Callus Cultures of Prunella vulgaris L. vol.180, pp.6, 2016, https://doi.org/10.1007/s12010-016-2153-1
  7. Extraction conditions of white rose petals for the inhibition of enzymes related to skin aging vol.31, pp.3, 2015, https://doi.org/10.5625/lar.2015.31.3.148
  8. Phenylethanoids from the Flowers of Rosa rugosa and Their Biological Activities vol.34, pp.1, 2013, https://doi.org/10.5012/bkcs.2013.34.1.246
  9. Optimization of Adventitious Root Culture for Production of Biomass and Secondary Metabolites in Prunella vulgaris L. vol.174, pp.6, 2014, https://doi.org/10.1007/s12010-014-1190-x
  10. The influence of TDZ concentrations on in vitro growth and production of secondary metabolites by the shoot and callus culture of Lallemantia iberica vol.122, pp.2, 2015, https://doi.org/10.1007/s11240-015-0769-4
  11. Production of biomass and bioactive compounds from shoot cultures of Rosa rugosa using a bioreactor culture system vol.57, pp.1, 2016, https://doi.org/10.1007/s13580-016-0111-z
  12. Determination of the volatile and polyphenol constituents and the antimicrobial, antioxidant, and tyrosinase inhibitory activities of the bioactive compounds from the by-product of Rosa rugosa Thunb. var. plena Regal tea vol.18, pp.1, 2018, https://doi.org/10.1186/s12906-018-2374-7
  13. Seed germination and biochemical profile of Citrus reticulata (Kinnow) exposed to green synthesised silver nanoparticles vol.12, pp.5, 2018, https://doi.org/10.1049/iet-nbt.2017.0303
  14. Green synthesis and characterisation of silver nanoparticles and their effects on antimicrobial efficacy and biochemical profiling in Citrus reticulata vol.12, pp.4, 2018, https://doi.org/10.1049/iet-nbt.2017.0153