DOI QR코드

DOI QR Code

Effect of Non-ionic Igepal CO-520 in Sonochemical Synthesis of Monodisperse Fe3O4 Nanoparticles

  • Son, Vo Thanh (Center for NanoBioEngineering & Spintronics (WCU program), Department of Materials Science and Engineering, Chungnam National University) ;
  • Phong, Le Van (Center for NanoBioEngineering & Spintronics (WCU program), Department of Materials Science and Engineering, Chungnam National University) ;
  • Islam, Nazrul Md. (Center for NanoBioEngineering & Spintronics (WCU program), Department of Materials Science and Engineering, Chungnam National University) ;
  • Hung, Tran Quang (Center for NanoBioEngineering & Spintronics (WCU program), Department of Materials Science and Engineering, Chungnam National University) ;
  • Kim, Sa-Rah (Nanomechanical System Research Center, Korea Institute of Machinery and Materials) ;
  • Jeong, Jun-Ho (Nanomechanical System Research Center, Korea Institute of Machinery and Materials) ;
  • Kim, Cheol-Gi (Center for NanoBioEngineering & Spintronics (WCU program), Department of Materials Science and Engineering, Chungnam National University) ;
  • Jeong, Jong-Ryul (Department of Materials Science and Engineering and Graduate School of Green Energy Technology, Chungnam National University)
  • Received : 2010.05.17
  • Accepted : 2010.06.18
  • Published : 2010.09.30

Abstract

We have investigated a surfactant-assisted sonochemical approach to produce monodisperse $Fe_3O_4$ nanoparticles (NPs). The non-ionic surfactant Igepal CO-520 (Poly(oxyethylene)(5) nonylphenyl ether) has been used for the preparation of NPs and the effects on the NP size, size distribution, and magnetic properties have been studied. The $Fe_3O_4$ NPs were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and vibrating sample magnetometry (VSM). The results reveal that the NPs prepared by a Igepal CO-520-assisted sonochemical method exhibit a narrow range of size distributions and a high monodispersity compared to the NPs from the conventional sonochemical method. The analysis of NPs prepared in the presence of the surfactant suggested that it could be used not only as a protector to prevent the oxidation of Fe (II), but also as a controller to vary the size of the NPs.

Keywords

References

  1. R. Fernandez-Pacheco, M. Arrueodo, C. Marquina, R. Ibarra, J. Arbiol, and J. Santamaria, Nanotechnology 17, 1188 (2006). https://doi.org/10.1088/0957-4484/17/5/004
  2. U. Backman, U. Tapper, and J. K. Jokiniemi, Synthetic Met. 142, 169 (2004). https://doi.org/10.1016/j.synthmet.2003.08.007
  3. B. S. Han, C. K. Rhee, M. K. Lee, and Y. R. Uhm, IEEE Trans. Magn. 42, 3779 (2006). https://doi.org/10.1109/TMAG.2006.884515
  4. T. Tsuzuki and P. G. McCormick, J. Mater. Sci. 39, 5143 (2004). https://doi.org/10.1023/B:JMSC.0000039199.56155.f9
  5. S.-J. Lee, J.-R. Jeong, S.-C. Shin, J.-C. Kim, Y.-H. Chang, and J.-D. Kim, J. Magn. Magn. Mater. 272, 2432 (2004). https://doi.org/10.1016/j.jmmm.2003.12.416
  6. J. N. Park, K. J. An, Y. S. Hwang, J-G. Park, H-J. Noh, J.Y. Kim, J-H. Park, N-M. Hwang, and T. Hyeon, Nature Mater. 3, 891 (2004). https://doi.org/10.1038/nmat1251
  7. D. Langevin, Annu. Rev. Phys. Chem. 43, 341 (1992). https://doi.org/10.1146/annurev.pc.43.100192.002013
  8. X. Wang, J. Zhuang, Q. Peng, and Y. Li, Nature 437, 121 (2005). https://doi.org/10.1038/nature03968
  9. H. Deng, X. Li, Q. Peng, X. Wang, J. Chen, and Y. Li, Angew. Chem. Int. Ed. 44, 2782 (2005). https://doi.org/10.1002/anie.200462551
  10. S.-W. Cao, Y-J. Zhu, and J. Chang, New J. Chem. 32, 1526 (2008). https://doi.org/10.1039/b719436f
  11. Y. W. Oh and J. P. Liu, J. Magnetics 11, 123 (2006). https://doi.org/10.4283/JMAG.2006.11.3.123
  12. K. J. Woo, H. J. Lee, J. P. Ahn, and Y. S. Park, Adv. Mater. 15, 1761 (2003). https://doi.org/10.1002/adma.200305561
  13. A. Morel, S. I. Nikitenko, K. Gionnet, A. Wattiaux, J. Lai-Kee-Him, C. Labrugere, B. Chevalier, G. Deleris, C. Petibois, A. Brisson, and M. Simonoff, ACS Nano 2, 847 (2008). https://doi.org/10.1021/nn800091q
  14. Y. S. Koo, B. K. Yun, and J. H. Jung, J. Magnetics 15, 21 (2010). https://doi.org/10.4283/JMAG.2010.15.1.021
  15. J.-R. Jeong, S.-C. Shin, S.-J. Lee, and J.-D. Kim, J. Magn. Magn. Mater. 286, 5 (2005). https://doi.org/10.1016/j.jmmm.2004.09.129
  16. J. H. Cho, S. G. Ko, Y. Ahn, and E. J. Choi, J. Magnetics 14, 124 (2009). https://doi.org/10.4283/JMAG.2009.14.3.124
  17. J. Park, K. An, Y. Hwang, J.-G. Park, H.-J. Noh, J.-Y. Kim, J.-H. Park, N.-M. Hwang and T. Hyeon, Nature Mater. 3, 891 (2004). https://doi.org/10.1038/nmat1251
  18. C. J. Bae, S. Angappane, J.-G. Park, Y. Lee, J. Lee, K. An, and T. Hyeon, Appl. Phys. Lett. 91, 102502 (2007). https://doi.org/10.1063/1.2778758
  19. F. Dang, N. Enomoto, J. Hojo, and K Enpuku, Ultrason. Sonochem. 16, 649 (2009). https://doi.org/10.1016/j.ultsonch.2008.11.003
  20. Y. Mizukoshi, T. Shuto, N. Masahashi, and S. Tanabe, Ultrason. Sonochem. 16, 525 (2009). https://doi.org/10.1016/j.ultsonch.2008.12.017
  21. J. P. Wilcoxon and P. P. Provencio, J. Phys. Chem. B 103, 9809 (1999). https://doi.org/10.1021/jp992133g
  22. X.-M. Lin and Anna C. S. Samia, J. Magn. Magn. Mater. 305, 100 (2006). https://doi.org/10.1016/j.jmmm.2005.11.042
  23. L. V. Phong, T. Q. Hung, V. T. Son, S. Kim, J.-H. Jeong, C. Kim, and J.-R. Jeong, J. Nanosci, Nanotechnology 10, 1 (in press).
  24. J. Sun, S. Zhou, P. Hou, Y. Yang, J. Weng, X. Li, and M. Li, J. Bio. Mater. Research Part A 80A, 333 (2006).
  25. D. K. Kim, Y. Zhang, W. Voit, K. V. Rao, and M. Muhammed, J. Magn. Magn. Mater. 225, 30 (2001). https://doi.org/10.1016/S0304-8853(00)01224-5
  26. C. G. Granqvist and R. H. Buhrman, J. Appl. Phys. 47, 2200 (1976). https://doi.org/10.1063/1.322870
  27. S. Sun, H. Zeng, D. B. Robinson, S. Raoux, P. M. Rice, S. X. Wang, and G. Li, J. Am. Chem. Soc. 126, 273 (2004). https://doi.org/10.1021/ja0380852