DOI QR코드

DOI QR Code

Severely modified lipoprotein properties without a change in cholesteryl ester transfer protein activity in patients with acute renal failure secondary to Hantaan virus infection

  • Kim, Ji-Hoe (School of Biotechnology, Yeungnam University) ;
  • Park, Hyun-Ho (School of Biotechnology, Yeungnam University) ;
  • Choi, In-Ho (School of Biotechnology, Yeungnam University) ;
  • Kim, Young-Ok (Department of Internal Medicine, College of Medicine, The Catholic University of Korea) ;
  • Cho, Kyung-Hyun (School of Biotechnology, Yeungnam University)
  • Received : 2009.07.24
  • Accepted : 2009.11.23
  • Published : 2010.08.31

Abstract

Patients with hemorrhagic fever with renal syndrome (HFRS) often exhibit altered serum lipid and lipoprotein profile during the oliguric phase of the disease. Serum lipid and lipoprotein profiles were assessed during the oliguric and recovery phases in six male patients with HFRS. In the oliguric phase of HFRS, the apolipoprotein (apo) C-III content in high-density lipoproteins (HDL) was elevated, whereas the apoA-I content was lowered. The level of expression and activity of antioxidant enzymes were severely reduced during the oliguric phase, while the cholesteryl ester transfer protein activity and protein level were unchanged between the phases. In the oliguric phase, electromobility of $HDL_2$ and $HDL_3$ was faster than in the recovery phase. Low-density lipoprotein (LDL) particle size was smaller and the distribution was less homogeneous. Patients with HFRS in the oliguric phase had severely modified lipoproteins in composition and metabolism.

Keywords

References

  1. Khaiboullina, S. F., Morzunov, S. P. and St Jeor, S. C. (2005) Hantaviruses: molecular biology, evolution and pathogenesis. Curr. Mol. Med. 5, 773-790. https://doi.org/10.2174/156652405774962317
  2. Lee, H. W. and van der Groen, G. (1989) Hemorrhagic fever with renal syndrome. Prog. Med. Virol. 36, 62-102.
  3. Ko, K. W. (1992) Haemorrhagic fever with renal syndrome: clinical aspects. Pediatr. Nephrol. 6, 197-200. https://doi.org/10.1007/BF00866316
  4. Saland, J. M. and Ginsberg, H. N. (2007) Lipoprotein metabolism in chronic renal insufficiency. Pediatr. Nephrol. 22, 1095-1112. https://doi.org/10.1007/s00467-007-0467-5
  5. Hirano, T., Sakaue, T., Misaki, A., Murayama, S., Takahashi, T., Okada, K., Takeuchi, H., Yoshino, G. and Adachi, M. (2003) Very low-density lipoprotein-apoprotein CI is increased in diabetic nephropathy: comparison with apoprotein CIII. Kidney Int. 63, 2171- 2177. https://doi.org/10.1046/j.1523-1755.2003.00019.x
  6. Foley, R. N. (2004) Cardiac disease in chronic uremia: can it explain the reverse epidemiology of hypertension and survival in dialysis patients? Semin Dial. 17, 275-278. https://doi.org/10.1111/j.0894-0959.2004.17326.x
  7. Iseki, K., Yamazato, M., Tozawa, M. and Takishita, S. (2002) Hypocholesterolemia is a significant predictor of death in a cohort of chronic hemodialysis patients. Kidney Int. 61, 1887-1893. https://doi.org/10.1046/j.1523-1755.2002.00324.x
  8. Cho, K. H., Park, S. H., Park, J. E., Kim, Y. O., Choi, I., Kim, J. J. and Kim, J. R. (2008) The function, composition, and particle size of high-density lipoprotein were severely impaired in an oliguric phase of hemorrhagic fever with renal syndrome patients. Clin. Biochem. 41, 56-64. https://doi.org/10.1016/j.clinbiochem.2007.10.007
  9. Hu, M. L., Liu, J. W., Wu, K. L., Lu, S. N., Chiou, S. S., Kuo, C. H., Chuah, S. K., Wang, J. H., Hu, T. H., Chiu, K. W., Lee, C. M. and Changchien, C. S. (2005) Short report: abnormal liver function in scrub typhus. Am. J. Trop. Med. Hyg. 73, 667- 668.
  10. Shachter, N. S. (2001) Apolipoproteins C-I and C-III as important modulators of lipoprotein metabolism. Curr. Opin. Lipidol. 12, 297-304. https://doi.org/10.1097/00041433-200106000-00009
  11. Briones, E. R., Mao, S. J., Palumbo, P. J., O’Fallon, W. M., Chenoweth, W. and Kottke, B. A. (1984) Analysis of plasma lipids and apolipoproteins in insulin-dependent and noninsulin-dependent diabetics. Metabolism 33, 42-49. https://doi.org/10.1016/0026-0495(84)90160-4
  12. Krauss, R. M. (1998) Atherogenicity of triglyceride-rich lipoproteins. Am. J. Cardiol. 81, B13-17. https://doi.org/10.1016/S0002-9149(98)00032-0
  13. Cho, K. H. (2009) Synthesis of reconstituted high-density lipoprotein (rHDL) containing apoA-I and apoC-III: the functional role of apoC-III in rHDL. Mol. Cells 27, 291-297. https://doi.org/10.1007/s10059-009-0037-8
  14. Sacks, F. M., Alaupovic, P., Moye, L. A., Cole, T. G., Sussex, B., Stampfer, M. J., Pfeffer, M. A. and Braunwald, E. (2000) VLDL, apolipoproteins B, CIII, and E, and risk of recurrent coronary events in the Cholesterol and Recurrent Events (CARE) trial. Circulation 102, 1886-1892. https://doi.org/10.1161/01.CIR.102.16.1886
  15. Ebara, T., Ramakrishnan, R., Steiner, G. and Shachter, N. S. (1997) Chylomicronemia due to apolipoprotein CIII overexpression in apolipoprotein E-null mice. Apolipoprotein CIII-induced hypertriglyceridemia is not mediated by effects on apolipoprotein E. J. Clin. Invest. 99, 2672-2681. https://doi.org/10.1172/JCI119456
  16. Aalto-Setala, K., Fisher, E. A., Chen, X., Chajek-Shaul, T., Hayek, T., Zechner, R., Walsh, A., Ramakrishnan, R., Ginsberg, H. N. and Breslow, J. L. (1992) Mechanism of hypertriglyceridemia in human apolipoprotein (apo) CIII transgenic mice. Diminished very low density lipoprotein fractional catabolic rate associated with increased apo CIII and reduced apo E on the particles. J. Clin. Invest. 90, 1889-1900. https://doi.org/10.1172/JCI116066
  17. Jonas, A. (1998) Regulation of lecithin cholesterol acyltransferase activity. Prog. Lipid. Res. 37, 209-234. https://doi.org/10.1016/S0163-7827(98)00007-1
  18. Cho, K. H. (2009) Biomedicinal implications of high-density lipoprotein: its composition, structure, functions, and clinical applications. BMB Reports 42, 393-400. https://doi.org/10.5483/BMBRep.2009.42.7.393
  19. Jahangiri, A., de Beer, M. C., Noffsinger, V., Tannock, L. R., Ramaiah, C., Webb, N. R., van der Westhuyzen, D. R. and de Beer, F. C. (2009) HDL remodeling during the acute phase response. Arterioscler. Thromb. Vasc. Biol. 29, 261-267. https://doi.org/10.1161/ATVBAHA.108.178681
  20. Mowri, H. O., Patsch, J. R., Ritsch, A., Foger, B., Brown, S. and Patsch, W. (1994) High density lipoproteins with differing apolipoproteins: relationships to postprandial lipemia, cholesteryl ester transfer protein, and activities of lipoprotein lipase, hepatic lipase, and lecithin: cholesterol acyltransferase. J. Lipid. Res. 35, 291-300.
  21. Havel, R. J., Eder, H. A. and Bragdon, J. H. (1955) The distribution and chemical composition of ultracentrifugally separated lipoproteins in human serum. J. Clin. Invest. 34, 1345-1353. https://doi.org/10.1172/JCI103182
  22. Markwell, M. A., Haas, S. M., Bieber, L. L. and Tolbert, N. E. (1978) A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples. Anal. Biochem. 87, 206-210. https://doi.org/10.1016/0003-2697(78)90586-9
  23. Cockcroft, D. W. and Gault, M. H. (1976) Prediction of creatinine clearance from serum creatinine. Nephron. 16, 31-41. https://doi.org/10.1159/000180580
  24. Matz, C. E. and Jonas, A. (1982) Micellar complexes of human apolipoprotein A-I with phosphatidylcholines and cholesterol prepared from cholate-lipid dispersions. J. Biol. Chem. 257, 4535-4540.
  25. Park, K. H., Shin, D. G., Kim, J. R. and Cho, K. H. (2010) Senescence-related truncation and multimerization of apolipoprotein A-I in high-density lipoprotein with an elevated level of advanced glycated end products and cholesteryl ester transfer activity. J. Gerontol. A. Biol. Sci. Med. Sci. 65, 600-610.
  26. Eckerson, H. W., Wyte, C. M. and La Du, B. N. (1983) The human serum paraoxonase/arylesterase polymorphism. Am. J. Hum. Genet. 35, 1126-1138.
  27. Noble, R. P. (1968) Electrophoretic separation of plasma lipoproteins in agarose gel. J. Lipid. Res. 9, 693-700.
  28. Zarev, S., Bonnefont-Rousselot, D., Jedidi, I., Cosson, C., Couturier, M., Legrand, A., Beaudeux, J. L. and Therond, P. (2003) Extent of copper LDL oxidation depends on oxidation time and copper/LDL ratio: chemical characterization. Arch. Biochem. Biophys. 420, 68-78. https://doi.org/10.1016/j.abb.2003.09.022

Cited by

  1. Leptospirosis is Associated with Markedly Increased Triglycerides and Small Dense Low-Density Lipoprotein and Decreased High-Density Lipoprotein vol.46, pp.10, 2011, https://doi.org/10.1007/s11745-011-3580-y
  2. A proteoliposome containing apolipoprotein A-I mutant (V156K) enhances rapid tumor regression activity of human origin oncolytic adenovirus in tumor-bearing zebrafish and mice vol.34, pp.2, 2012, https://doi.org/10.1007/s10059-012-2291-4
  3. 1,8-cineole protected human lipoproteins from modification by oxidation and glycation and exhibited serum lipid-lowering and anti-inflammatory activity in zebrafish vol.45, pp.10, 2012, https://doi.org/10.5483/BMBRep.2012.45.10.044
  4. Modified High-Density Lipoproteins by Artificial Sweetener, Aspartame, and Saccharin, Showed Loss of Anti-atherosclerotic Activity and Toxicity in Zebrafish vol.15, pp.1, 2015, https://doi.org/10.1007/s12012-014-9273-z
  5. Hantavirus infection—Hemorrhagic fever with renal syndrome: the first case series reported in Romania and review of the literature vol.44, pp.4, 2012, https://doi.org/10.1007/s11255-011-0013-z
  6. Dysfunctional Lipoproteins from Young Smokers Exacerbate Cellular Senescence and Atherogenesis with Smaller Particle Size and Severe Oxidation and Glycation vol.140, pp.1, 2014, https://doi.org/10.1093/toxsci/kfu076