DOI QR코드

DOI QR Code

Effect of light and sediment grain size on the vertical migration of benthic diatoms

  • Du, Guo Ying (College of Marine Life Science, Ocean University of China) ;
  • Oak, Jung-Hyun (Marine Research Institute, Pusan National University) ;
  • Li, Hongbo (National Marine Environmental Monitoring Center) ;
  • Chung, Ik-Kyo (Division of Earth Environmental System, Pusan National University)
  • Received : 2010.03.27
  • Accepted : 2010.08.15
  • Published : 2010.09.15

Abstract

Using chlorophyll fluorescence, the vertical migration of benthic diatoms responding to light intensity and affected by sediment grain size was studied. Minimal fluorescence ($F_o$) of surface sediment was measured by imaging pulse amplitude modulated (Imaging-PAM) fluorometer, and used to monitor diatom biomass variation in surface sediments. The test diatoms, Amphora coffeaeformis (C. Agardh) K$\ddot{u}$tzing and Cylindrotheca closterium (Ehrenberg) Reimann & Lewin, migrated to the sediment surface under irradiance from 50 to 500 ${\mu}mol$ photons $m^{-2}s^{-1}$. However, the diatoms exhibited no evident increase of surface biomass under dark conditions, and even showed slightly decrease of surface biomass under irradiances over 1,000 ${\mu}mol$ photons $m^{-2}s^{-1}$. The light intensity inducing the maximum surface migration of A. coffeaeformis was 100 ${\mu}mol$ photons $m^{-2}s^{-1}$, while the light intensity producing the same effect for C. closterium was 250 ${\mu}mol$ photons $m^{-2}s^{-1}$. C. closterium showed higher motility than A. coffeaeformis. Faster diatom surfacing was observed in larger grain size sediments (125-335 ${\mu}m$) than smaller ones (63-125 ${\mu}m$). This study confirmed the significant influence of light as a main triggering factor behind migration, indicated the distinct effect of different sediment grain size, and highlighted the species-specific migratory ability.

Keywords

References

  1. Aleem, A. A. 1950. The diatom community inhabiting the mud-flats at Whitstable. New Phytol. 49:174-188. https://doi.org/10.1111/j.1469-8137.1950.tb07503.x
  2. Bale, A. J. & Kenny, A. J. 2005. Sediment analysis and seabed characterization. In Eleftheriou, A. & Mclntyre, A. (Eds.) Methods for the Study of Marine Benthos. 3rd ed. Blackwell Publishing, Oxford, pp. 43-86.
  3. Barranguet, C. & Kromkamp, J. 2000. Estimating primary production rates from photosynthetic electron transport in estuarine microphytobenthos. Mar. Ecol. Prog. Ser. 204:39-52. https://doi.org/10.3354/meps204039
  4. Cohn, S. A. & Disparti, N. C. 1994. Environmental factors influencing diatom cell motility. J. Phycol. 30:818-828. https://doi.org/10.1111/j.0022-3646.1994.00818.x
  5. Cohn, S. A., Farrell, J. F., Munro, J. D., Ragland, R. L., Weitzell, R. E. & Wibisono, B. L. 2003. The effect of temperature and mixed species composition on diatom motility and adhesion. Diatom Res. 18:225-243. https://doi.org/10.1080/0269249X.2003.9705589
  6. Consalvey, M., Paterson, D. M. & Underwood, G. J. C. 2004. The ups and downs of life in a benthic biofilm: migration of benthic diatoms. Diatom Res. 19:181-202. https://doi.org/10.1080/0269249X.2004.9705870
  7. Eaton, J. W. & Moss, B. 1966. The estimation of numbers and pigment content in epipelic algal populations. Limnol. Oceanogr. 11:584-595. https://doi.org/10.4319/lo.1966.11.4.0584
  8. Flemming, B. W. & Delafontaine, M. T. 2000. Mass physical properties of muddy intertidal sediments: some applications, misapplications and non-applications. Cont. Shelf Res. 20:1179-1197. https://doi.org/10.1016/S0278-4343(00)00018-2
  9. Guarini, J. M., Blanchard, G. F., Gros, P., Gouleau, D. & Bacher, C. 2000. Dynamic model of the short-term variability of microphytobenthic biomass on temperate intertidal mudflats. Mar. Ecol. Prog. Ser. 195:291-303. https://doi.org/10.3354/meps195291
  10. Harper, M. A. 1977. Movements. In Werner, D. (Ed.) The Biology of Diatoms. Univ. of California Press, Berkley and Los Angeles, pp. 224-249.
  11. Hay, S. I., Maitland, T. C. & Paterson, D. M. 1993. The speed of diatom migration through natural and artificial substrata. Diatom Res. 8:371-384. https://doi.org/10.1080/0269249X.1993.9705268
  12. Honeywill, C., Paterson, D. N. & Hagerthey, S. E. 2002. Determination of microphytobenthic biomass using pulse-amplitude modulated minimum fluorescence. Eur. J. Phycol. 37:485-492. https://doi.org/10.1017/S0967026202003888
  13. Hopkins, J. T. 1963. A study of the diatoms of the Ouse Estuary, Sussex (I). The movement of mudflat diatoms in response to some chemical and physical changes. J. Mar. Biol. Assoc. U.K. 43:653-663. https://doi.org/10.1017/S0025315400025595
  14. Janssen, M., Hust, M., Rhiel, E. & Krumbein, W. E. 1999. Vertical migration behaviour of diatom assemblages of Wadden Sea sediments (Dangast, Germany): a study using cryo-scanning electron microscopy. Int. Microbiol. 2:103-110.
  15. Jesus, B., Perkins, R. G., Consalvey, M., Brotas, V. & Paterson, D. M. 2006a. Effects of vertical migrations by benthic microalgae on fluorescence measurements of photophysiology. Mar. Ecol. Prog. Ser. 315:55-66. https://doi.org/10.3354/meps315055
  16. Jesus, B., Perkins, R. G., Mendes, C. R., Brotas, V. & Paterson D. M. 2006b. Chlorophyll fluorescence as a proxy for microphytobenthic biomass: alternatives to the current methodology. Mar. Biol. 150:17-28. https://doi.org/10.1007/s00227-006-0324-2
  17. Joint, I. R., Gee, J. M. & Warwick, R. M. 1982. Determination of fine-scale vertical distribution of microbes and meiofauna in an intertidal sediment. Mar. Biol. 72:157-164. https://doi.org/10.1007/BF00396916
  18. Kromkamp, J., Barranguet, C. & Peene, J. 1998. Determination of microphytobenthos PSII quantum efficiency and photosynthetic activity by means of variable chlorophyll fluorescence. Mar. Ecol. Prog. Ser. 162:45-55. https://doi.org/10.3354/meps162045
  19. Kromkamp, J. C., Morris, E. P., Forster, R. M., Honeywill, C., Hagerthey, S. & Paterson, D. M. 2006. Relationship of intertidal surface sediment chlorophyll concentration to hyperspectral reflectance and chlorophyll fluorescence. Estuar. Coast. 29:183-196. https://doi.org/10.1007/BF02781988
  20. Lorenzen, C. J. 1967. Determination of chlorophyll and pheo-pigments: spectrophotometric equations. Limnol. Oceanogr. 12:343-346. https://doi.org/10.4319/lo.1967.12.2.0343
  21. MacIntyre, H. L., Geider, R. J. & Miller, D. C. 1996. Microphytobenthos: the ecological role of the “secret garden” of unvegetated, shallow-water marine habitats: I. distribution, abundance and primary production. Estuaries 19:186-201. https://doi.org/10.2307/1352224
  22. Meleder, V., Barille, L., Launeau, P., Carrere, V. & Rince, Y. 2003. Spectrometric constraint in analysis of benthic diatom biomass using monospecific cultures. Remote Sens. Environ. 88:386-400. https://doi.org/10.1016/j.rse.2003.08.009
  23. Mitbavkar, S. & Anil, A. C. 2002. Diatoms of the micropytobenthic community: population structure in a tropical intertidal sand flat. Mar. Biol. 140:41-57. https://doi.org/10.1007/s002270100686
  24. Ni Longphuirt, S., Leynaert, A., Guarini, J. M., Chauvaud, L., Claquin, P., Herlory, O., Amice, E., Huonnic, P. & Ragueneau, O. 2006. Discovery of microphytobenthos migration in the subtidal zone. Mar. Ecol. Prog. Ser. 328:143-154. https://doi.org/10.3354/meps328143
  25. Palmer, J. D. & Round, F. E. 1967. Persistent, vertical-migration rhythms in benthic microflora VI: the tidal and diurnal nature of the rhythm in the diatom Hantzschia virgata. Biol. Bull. 132:44-55. https://doi.org/10.2307/1539877
  26. Paterson, D. M. 1986. The migratory behaviour of diatom assemblages in a laboratory tidal micro-ecosystem examined by low temperature scanning electron microscopy. Diatom Res. 1:227-239. https://doi.org/10.1080/0269249X.1986.9704971
  27. Paterson, D. M., Wiltshire, K. H., Miles, A., Blackburn, J., Davidson, I., Yates, M. G., McGrorty, S. & Eastwood, J. A. 1998. Microbiological mediation of spectral reflectance from intertidal cohesive sediments. Limnol. Oceanogr. 43:1207-1221. https://doi.org/10.4319/lo.1998.43.6.1207
  28. Perkins, E. J. 1960. The diurnal rhythm of the littoral diatoms of the river Eden estuary, Fife. J. Ecol. 48:725-728. https://doi.org/10.2307/2257345
  29. Perkins, R. G., Underwood, G. J. C., Brotas, V., Snow, G. C., Jesus, B. & Ribeiro, L. 2001. Response of microphytobenthos to light: primary production and carbohydrate allocation over an emersion period. Mar. Ecol. Prog. Ser. 223:101-112. https://doi.org/10.3354/meps223101
  30. Pinckney, J. & Zingmark, R. G. 1991. Effects of tidal stage and sun angles on intertidal benthic microalgal productivity. Mar. Ecol. Prog. Ser. 76:81-89. https://doi.org/10.3354/meps076081
  31. Round, F. E. & Palmer, J. D. 1966. Persistent, vertical-migration rhythms in benthic microflora: II. field and laboratory studies on diatoms from the banks of the river Avon. J. Mar. Biol. Assoc. U.K. 46:191-214. https://doi.org/10.1017/S0025315400017641
  32. Sauer, J., Wenderoth, K., Maier, U. G. & Rhiel, E. 2002. Effects of salinity, light and time on the vertical migration of diatom assemblages. Diatom Res. 17:189-203. https://doi.org/10.1080/0269249X.2002.9705538
  33. Serodio, J. & Catarino, F. 2000. Modelling the primary productivity of intertidal microphytobenthos: time scales of variability and effects of migratory rhythms. Mar. Ecol. Prog. Ser. 192:13-30. https://doi.org/10.3354/meps192013
  34. Serodio, J., da Silva, J. M. & Catarino, F. 1997. Nondestructive tracing of migratory rhythms of intertidal benthic microalgae using in vivo chlorophyll a fluorescence. J. Phycol. 33:542-553. https://doi.org/10.1111/j.0022-3646.1997.00542.x
  35. Serodio, J., da Silva, J. M. & Catarino, F. 2001. Use of in vivo chlorophyll a fluorescence to quantify short-term variations in the productive biomass of intertidal microphytobenthos. Mar. Ecol. Prog. Ser. 218:45-61. https://doi.org/10.3354/meps218045
  36. Serodio, J., Coelho, H., Vieira, S. & Cruz, S. 2006. Microphytobenthos vertical migratory photoresponse as characterized by light-response curves of surface biomass. Estuar. Coast Shelf Sci. 68:547-556. https://doi.org/10.1016/j.ecss.2006.03.005
  37. Taylor, J. C., de la Rey, P. A. & van Rensburg, L. 2005. Recommendations for the collection, preparation and enumeration of diatoms from riverine habitats for water quality monitoring in South Africa. Afr. J. Aquat. Sci. 30:65-75. https://doi.org/10.2989/16085910509503836
  38. Underwood, G. J. C. & Kromkamp, J. 1999. Primary production by phytoplankton and microphytobenthos in estuaries. In Nedwell, D. B. & Raffaelli, D. G. (Eds.) Advances in Ecological Research. Vol. 29. Estuaries. Academic Press, London, pp. 93-153.
  39. Underwood, G. J. C., Perkins, R. G., Consalvey, M. C., Hanlon, A. R. M., Oxborough, K., Baker, N. R. & Paterson, D. M. 2005. Patterns microphytobenthic primary productivity: species-specific variation in migratory rhythms and photosynthetic efficiency in mixed-species biofilms. Limnol. Oceanogr. 50:755-767. https://doi.org/10.4319/lo.2005.50.3.0755

Cited by

  1. Effects of shallow and deep sediment disturbance on whole-stream metabolism in experimental sand-bed flumes vol.683, pp.1, 2012, https://doi.org/10.1007/s10750-011-0968-x
  2. Migratory Responses of Benthic Diatoms to Light and Temperature Monitored by Chlorophyll Fluorescence vol.55, pp.2, 2012, https://doi.org/10.1007/s12374-011-9200-9
  3. Response of intertidal benthic microalgal biofilms to a coupled light-temperature stress: evidence for latitudinal adaptation along the Atlantic coast of Southern Europe vol.17, pp.10, 2015, https://doi.org/10.1111/1462-2920.12728
  4. The importance of being fast: comparative kinetics of vertical migration and non-photochemical quenching of benthic diatoms under light stress vol.163, pp.1, 2016, https://doi.org/10.1007/s00227-015-2793-7
  5. Comparative analysis of light-stimulated motility responses in three diatom species vol.30, pp.3, 2015, https://doi.org/10.1080/0269249X.2015.1058295
  6. Settlement and cell division of diatomNaviculacan be influenced by light of various qualities and intensities vol.53, pp.11, 2013, https://doi.org/10.1002/jobm.201200315
  7. Analysis of light quality and assemblage composition on diatom motility and accumulation rate vol.31, pp.3, 2016, https://doi.org/10.1080/0269249X.2016.1193058
  8. Effect of short-term hypoxia on the feeding activity of abundant nematode genera from an intertidal mudflat vol.19, pp.1, 2017, https://doi.org/10.1163/15685411-00003028
  9. Effects of the bioturbating lugworm Arenicola marina on the structure of benthic protistan communities vol.471, 2012, https://doi.org/10.3354/meps10008
  10. Going with the Flow: Detection of Drift in Response to Hypo-Saline Stress by the Estuarine Benthic Diatom Cylindrotheca closterium vol.8, pp.11, 2013, https://doi.org/10.1371/journal.pone.0081073
  11. Behavioral and physiological photoresponses to light intensity by intertidal microphytobenthos 2017, https://doi.org/10.1007/s00343-017-6099-0
  12. Fish Trophodynamics in Tropical Mudflats: a Dietary and Isotopic Perspective pp.1559-2731, 2019, https://doi.org/10.1007/s12237-019-00519-z
  13. Effect of Light Intensity and Light Quality on Diatom Behavioral and Physiological Photoprotection vol.7, pp.None, 2010, https://doi.org/10.3389/fmars.2020.00203
  14. The Vertical Migratory Rhythm of Intertidal Microphytobenthos in Sediment Depends on the Light Photoperiod, Intensity, and Spectrum: Evidence for a Positive Effect of Blue Wavelengths vol.7, pp.None, 2010, https://doi.org/10.3389/fmars.2020.00212
  15. Travelling Expenses: The Energy Cost of Diel Vertical Migrations of Epipelic Microphytobenthos vol.7, pp.None, 2010, https://doi.org/10.3389/fmars.2020.00433