DOI QR코드

DOI QR Code

Maintenance of cellular tetrahydrobiopterin homeostasis

  • Kim, Hye-Lim (FIRST Research Group, School of Biological Sciences, Inje University) ;
  • Park, Young-Shik (FIRST Research Group, School of Biological Sciences, Inje University)
  • Received : 2010.08.11
  • Published : 2010.09.30

Abstract

Tetrahydrobiopterin (BH4) is a multifunctional cofactor of aromatic amino acid hydroxylases and nitric oxide synthase (NOS) as well as an intracellular antioxidant in animals. Through regulation of NOS activity BH4 plays a pivotal role not only in a variety of normal cellular functions but also in the pathogenesis of cardiovascular and neurodegenerative diseases, which develop under oxidative stress conditions. It appears that a balanced interplay between BH4 and NOS is crucial for cellular fate. If cellular BH4 homeostasis maintained by BH4 synthesis and regeneration fails to cope with increased oxidative stress, NOS is uncoupled to generate superoxide rather than NO and, in turn, exacerbates impaired BH4 homeostasis, thereby leading to cell death. The fundamental biochemical events involved in the BH4-NOS interplay are essentially the same, as revealed in mammalian endothelial, cardiac, and neuronal cells. This review summarizes information on the cellular BH4 homeostasis in mammals, focusing on its regulation under normal and oxidative stress conditions.

Keywords

References

  1. Thony, B., Auerbach, G. and Blau, N. (2000) Tetrahydrobiopterin biosynthesis, regeneration and functions. Biochem. J. 347, 1-16. https://doi.org/10.1042/0264-6021:3470001
  2. Kim, H. L., Choi, Y. K., Kim, D. H., Park, S. O., Han, J. and Park, Y. S. (2007) Tetrahydropteridine deficiency impairs mitochondrial function in Dictyostelium discoideum Ax2. FEBS Letters 581, 5430-5434. https://doi.org/10.1016/j.febslet.2007.10.044
  3. Cha, E. Y., Park, J. S., Jeon, S., Kong, J. S., Choi, Y. K., Ryu, J. Y., Park, Y. I. and Park, Y. S. (2005) Functional Characterization of the gene encoding UDP-glucose: tetrahydrobiopterin ${\alpha}$-glucosyltransferase in Synechococcus sp. PCC 7942. J. Microbiol. 43, 191-195.
  4. Longo, N. (2009) Disorders of biopterin metabolism. J. Inherit. Metab. Dis. 32, 333-342. https://doi.org/10.1007/s10545-009-1067-2
  5. Tegeder, I., Costigan, M., Griffin, R. S., Abele, A., Belfer, I., Schmidt, H., Ehnert, C., Nejim, J., Marian, C., Scholz, J., Wu, T., Allchorne, A., Diatchenko, L., Binshtok, A. M., Goldman, D., Adolph, J., Sama, S., Atlas, S. J., Carlezon, W. A., Parsegian, A., Lotsch, J., Fillingim, R. B., Maixner, W., Geisslinger, G., Max, M. B. and Woolf, C. J. (2006) GTP cyclohydrolase and tetrahydrobiopterin regulate pain sensitivity and persistence. Nat. Med. 12, 1269-1277. https://doi.org/10.1038/nm1490
  6. Schnetz-Boutaud, N. C., Anderson, B. M., Brown, K. D., Wright, H. H., Abramson, R. K., Cuccaro, M. L., Gilbert, J. R., Pericak-Vance, M. A. and Haines, J. L. (2009) Examination of tetrahydrobiopterin pathway genes in autism. Genes. Brain and Behavior 8, 753-757. https://doi.org/10.1111/j.1601-183X.2009.00521.x
  7. Richardson, M. A., Read, L. L., Reilly, M. A., Clelland, J. D. and Clelland, C. L. (2006) Analysis of plasma biopterin levels in psychiatric disorders suggests a common BH4 deficit in schizophrenia and schizoaffective disorder. Neurochem. Res. 32, 107-113. https://doi.org/10.1007/s11064-006-9233-5
  8. Foxton, R. H., Land, J. M. and Heales, S. J. (2007) Tetrahydrobiopterin availability in Parkinson's and Alzheimer's disease; potential pathogenic mechanisms. Neurochem. Res. 32, 751-756. https://doi.org/10.1007/s11064-006-9201-0
  9. Vasquez-Vivar, J. (2009) Tetrahydrobiopterin, superoxide and vascular dysfunction. Free Radic. Biol. Med. 15, 1108-1119.
  10. Fleming, I. (2010) Molecular mechanisms underlying the activation of eNOS. Pflugers Arch. 459, 793-806. https://doi.org/10.1007/s00424-009-0767-7
  11. Leeming, R. J., Hall, S. K., Surplice, I. M. and Green A. (1990) Relationship between plasma and red cell biopterins in acute and chronic hyperphenylalaninaemia. J. Inherit. Metab. Dis. 13, 883-887. https://doi.org/10.1007/BF01800214
  12. Hoshiga, M., Hatakeyama, K., Watanabe, M., Shimada, M. and Kagamiyama, H. (1993) Autoradiographic distribution of [14C] tetrahydrobiopterin and its developmental change in mice. J. Pharmacol. Exp. Ther. 267, 971-978.
  13. Katusic, Z. S. (2001) Vascular endothelial dysfunction: does tetrahydrobiopterin play a role? Am. J. Physiol. Heart Circ. Physiol. 281, 981-986. https://doi.org/10.1152/ajpheart.2001.281.3.H981
  14. Silberman, G. A., Fan, T. H., Liu, H., Jiao, Z., Xiao, H. D., Lovelock, J. D., Boulden, B. M., Widder, J., Fredd, S., Bernstein, K. E., Wolska, B. M., Dikalov, S., Harrison, D. G. and Dudley, S. C. Jr. (2010) Uncoupled cardiac nitric oxide synthase mediates diastolic dysfunction. Circulation 121, 519-528. https://doi.org/10.1161/CIRCULATIONAHA.109.883777
  15. Shang, T., Kotamraju, S., Kalivendi, S. V., Hillard, C. J. and Kalyanaraman, B. (2004) 1-Methyl-4-phenylpyridinium-induced apoptosis in cerebellar granule neurons is mediated by transferrin receptor iron-dependent depletion of tetrahydrobiopterin and neuronal nitric-oxide synthasederived superoxide. J. Biol. Chem. 279, 19099-19112. https://doi.org/10.1074/jbc.M400101200
  16. Shang, T., Kotamraju, S., Zhao, H., Kalivendi, S. V., Hillard, C. J. and Kalyanaraman, B. (2005) Sepiapterin attenuates 1-methyl-4-phenylpyridinium-induced apoptosis in neuroblastoma cells transfected with neuronal NOS: role of tetrahydrobiopterin, nitric oxide and proteasome activation. Free Radic. Biol. Med. 15, 1059-1074.
  17. Auerbach, G., Herrmann, A., Gutlich, M., Fischer, M., Jacob, U., Bacher, A. and Huber, R. (1997) The 1.25 ${\AA}$ crystal structure of sepiapterin reductase reveals its binding mode to pterins and brain neurotransmitters. EMBO J. 16, 7219-7230. https://doi.org/10.1093/emboj/16.24.7219
  18. Milstien, S. and Kaufman, S. (1989) The biosynthesis of tetrahydrobiopterin in rat brain. Purification and characterization of 6-pyruvoyl tetrahydropterin (2'-oxo) reductase. J. Biol. Chem. 264, 8066-8073.
  19. Park, Y. S., Heizmann, C. W., Wermuth, B., Levine, R. A., Steinerstauch, P., Guzman, J. and Blau, N. (1991) Human carbonyl and aldose reductase: new catalytic functions in tetrahydrobiopterin biosynthesis. Biochem. Biophys. Res. Commun. 175, 738-744. https://doi.org/10.1016/0006-291X(91)91628-P
  20. Hirakawa, H., Sawada, H., Yamahama, Y., Takikawa, S., Shintaku, H., Hara, A., Mase, K., Kondo, T. and Iino, T. (2009) Expression analysis of the aldo-keto reductases involved in the novel biosynthetic pathway of tetrahydrobiopterin in human and mouse tissues. J. Biochem. 146, 51-60. https://doi.org/10.1093/jb/mvp042
  21. Bonafe, L., Thony, B., Penzien, J. M., Czarnecki, B. and Blau, N. (2001) Mutations in the sepiapterin reductase gene cause a novel tetrahydrobiopterin-dependent monoamine-neurotransmitter deficiency without hyperphenylalaninemia. Am. J. Hum. Genet. 69, 269-277. https://doi.org/10.1086/321970
  22. Zorzi, G., Redweik, U., Trippe, H., Penzien, J. M., Thony, B. and Blau, N. (2002) Detection of sepiapterin in CSF of patients with sepiapterin reductase deficiency. Mol. Genet. Metab. 75, 174-177. https://doi.org/10.1006/mgme.2001.3273
  23. Yang, S., Lee, Y. J., Kim, J. M., Park, S., Peris, J., Laipis, P., Park, Y. S., Chung, J. H. and Oh, S. P. (2006) A murine model for human sepiapterin-reductase deficiency. Am. J. Hum. Genet. 78, 575-587. https://doi.org/10.1086/501372
  24. Craine, J. E., Hall, E. S. and Kaufman, S. (1972) The isolation and characterization of dihydropteridine reductase from sheep liver. J. Biol. Chem. 247, 6082-6091.
  25. Hevel, J. M., Stewart, J. A., Gross, K. L. and Ayling, J. E. (2006) Can the DCoHalpha isozyme compensate in patients with4a-hydroxy-tetrahydrobiopterin dehydratase/DCoH deficiency? Mol. Genet. Metab. 88, 38-46. https://doi.org/10.1016/j.ymgme.2005.11.014
  26. Harada, T., Kagamiyama, H. and Hatakeyama, K. (1993) Feedback Regulation Mechanisms for the control of GTP Cyclohydrolase I Activity. Science 260, 1507-1510. https://doi.org/10.1126/science.8502995
  27. Yoneyama, T. and Hatakeyama, K. (1998) Decameric GTP cyclohydrolase I forms complexes with two pentameric GTP cyclohydrolase I feedback regulatory proteins in the presence of phenylalanine or of a combination of tetrahydrobiopterin and GTP. J. Biol. Chem. 273, 20102-20108. https://doi.org/10.1074/jbc.273.32.20102
  28. Maita, N., Okada, K, Hatakeyama, K. and Hakoshima, T. (2002) Crystal structure of the stimulatory complex of GTP cyclohydrolase I and its feedback regulatory protein GFRP. Proc. Natl. Acad. Sci. U.S.A. 99, 1212-1217. https://doi.org/10.1073/pnas.022646999
  29. Milstien, S., Jaffe, H., Kowlessur, D. and Bonner, T. I. (1996) Purification and cloning of the GTP cyclohydrolase I feedback regulatory protein, GFRP. J. Biol. Chem. 271, 19743-19751. https://doi.org/10.1074/jbc.271.33.19743
  30. Gesierich, A., Niroomand, F. and Tiefenbacher, C. P. (2003) Role of human GTP cyclohydrolase I and its regulatory protein in tetrahydrobiopterin metabolism. Basic Res. Cardiol. 98, 69-75. https://doi.org/10.1007/s00395-003-0394-y
  31. Widder, J. D., Chen, W., Li, L., Dikalov, S., Thony, B., Hatakeyama, K. and Harrison, D. G. (2007) Regulation of tetrahydrobiopterin biosynthesis by shear stress. Circ. Res. 101, 830-838. https://doi.org/10.1161/CIRCRESAHA.107.153809
  32. Duncan, J. S. and Litchfield, D. W. (2008) Too much of a good thing: the role of protein kinase CK2 in tumorigenesis and prospects for therapeutic inhibition of CK2. Biochimica et Biophysica Acta. 1784, 33-47. https://doi.org/10.1016/j.bbapap.2007.08.017
  33. Li, L., Rezvan, A., Salerno, J. C., Husain, A., Kwon, K., Jo, H., Harrison, D. G. and Chen, W. (2010) GTP cyclohydrolase I phosphorylation and interaction with GTP cyclohydrolase feedback regulatory protein provide novel regulation of endothelial tetrahydrobiopterin and nitric oxide. Circ. Res. 106, 328-336. https://doi.org/10.1161/CIRCRESAHA.109.210658
  34. Kanaya, S., Ikeda, H., Haramaki, N., Murohara, T. and Imaizumi, T. (2001) Intraplatelet tetrahydrobiopterin plays an important role in regulating canine coronary arterial thrombosis by modulating intraplatelet nitric oxide and superoxide generation. Circulation 104, 2478-2484. https://doi.org/10.1161/hc4501.098930
  35. Lapize, C., Pluss, C., Werner, E. R., Huwiler, A. and Pfeilschifter, J. (1998) Protein kinase C phosphorylates and activates GTP cyclohydrolase I in rat renal mesangial cells. Biochem. Biophys. Res. Commun. 251, 802-805. https://doi.org/10.1006/bbrc.1998.9552
  36. Hesslinger, C., Kremmer, E., Hultner, L., Ueffing, M. and Ziegler, I. (1998) Phosphorylation of GTP cyclohydrolase I and modulation of Its activity in rodent mast cells. GTP cyclohydrolase I hyperphosphorylation is coupled to high affinity IgE receptor signaling and involves protein kinase C. J. Biol. Chem. 273, 21616-21622. https://doi.org/10.1074/jbc.273.34.21616
  37. Gilchrist, M., Hesslinger, C. and Befus, A. D. (2003) Tetrahydrobiopterin, a critical factor in the production and role of nitric oxide in mast cells. J. Biol. Chem. 278, 50607-50614. https://doi.org/10.1074/jbc.M307777200
  38. Du, J., Wei, N., Xu, H., Ge, Y., Vasquez-Vivar, J., Guan, T., Oldham, K. T., Pritchard, K. A. Jr. and Shi, Y. (2009) Identification and functional characterization of phosphorylation sites on GTP cyclohydrolase I. Arterioscler Thromb. Vasc. Biol. 29, 2161-2168. https://doi.org/10.1161/ATVBAHA.109.194464
  39. Elzaouk, L., Laufs, S., Heerklotz, D., Leimbacher, W., Blau, N., Resibois, A. and Thony, B. (2004) Nuclear localization of tetrahydrobiopterin biosynthetic enzymes. Biochim. Biophys. Acta. 1670, 56-68. https://doi.org/10.1016/j.bbagen.2003.10.015
  40. Chavan, B., Gillbro, J. M., Rokos, H. and Schallreuter, K. U. (2006) GTP cyclohydrolase feedback regulatory protein controls cofactor 6-tetrahydrobiopterin synthesis in the cytosol and in the nucleus of epidermal keratinocytes and melanocytes. J. Invest. Dermatol. 126, 2481-2489. https://doi.org/10.1038/sj.jid.5700425
  41. Xu, J., Wu, Y., Song, P., Zhang, M., Wang, S. and Zou, M. H. (2007) Proteasome-dependent degradation of guanosine 5'-triphosphate cyclohydrolase I causes tetrahydrobiopterin deficiency in diabetes mellitus. Circulation 116, 944-953. https://doi.org/10.1161/CIRCULATIONAHA.106.684795
  42. Wang, S., Xu, J., Song, P., Viollet, B. and Zou, M. H. (2009) In vivo activation of AMP-activated protein kinase attenuates diabetes-enhanced degradation of GTP cyclohydrolase I. Diabetes 58, 1893-1901. https://doi.org/10.2337/db09-0267
  43. Chiarini, A., Armato, U., Pacchiana, R. and Dal Pra, I. (2009) Proteomic analysis of GTP cyclohydrolase 1 multiprotein complexes in cultured normal adult human astrocytes under both basal and cytokine-activated conditions. Proteomics 9, 1850-1860. https://doi.org/10.1074/mcp.M900107-MCP200
  44. Peterson, T. E, d'Uscio, L. V., Cao, S., Wang, X. L. and Katusic, Z. S. (2009) Guanosine triphosphate cyclohydrolase I expression and enzymatic activity are present in caveolae of endothelial cells. Hypertension 53, 189-195. https://doi.org/10.1161/HYPERTENSIONAHA.108.115709
  45. Goligorsky, M. S., Li, H., Brodsky, S. and Chen, J. (2002) Relationships between caveolae and eNOS: everything in proximity and the proximity of everything. Am. J. Physiol. Renal. Physiol. 283, 1-10. https://doi.org/10.1152/ajpcell.00174.2002
  46. Shi, W., Meininger, C. J., Haynes, T. E., Hatakeyama, K. and Wu, G. (2004) Regulation of tetrahydrobiopterin synthesis and bioavailability in endothelial cells. Cell Biochem. Biophys. 41, 415-434. https://doi.org/10.1385/CBB:41:3:415
  47. Moens, A. L. and Kass, D. A. (2007) Therapeutic potential of tetrahydrobiopterin for treating vascular and cardiac disease. J. Cardiovasc. Pharmacol. 50, 238-246. https://doi.org/10.1097/FJC.0b013e318123f854
  48. Kalivendi, S., Hatakeyama, K., Whitsett, J., Konorev, E., Kalyanaraman, B. and Vasquez-Vivar, J. (2005) Changes in tetrahydrobiopterin levels in endothelial cells and adult cardiomyocytes induced by LPS and hydrogen peroxide?A role for GFRP? Free Radic. Biol. Med. 38, 481-491. https://doi.org/10.1016/j.freeradbiomed.2004.11.004
  49. Werner, E. R., Bahrami, S., Heller, R. and Werner-Felmayer, G. (2002) Bacterial lipopolysaccharide down-regulates expression of GTP cyclohydrolase I feedback regulatory protein. J. Biol. Chem. 227, 10129-10133.
  50. Xie, L., Smith, J. A. and Gross, S. S. (1998) GTP cyclohydrolase I inhibition by the prototypic inhibitor 2,4-diamino-6-hydroxypyrimidine. Mechanisms and unanticipated role of GTP cyclohydrolase I feedback regulatory protein. J. Biol. Chem. 273, 21091-21098. https://doi.org/10.1074/jbc.273.33.21091
  51. Ionova, I. A., Vasquez-Vivar, J., Whitsett, J., Herrnreiter, A., Medhora, M., Cooley, B. C. and Pieper, G. M. (2008) Deficient BH4 production via de novo and salvage pathways regulates NO responses to cytokines in adult cardiac myocytes. Am. J. Physiol. Heart Circ. Physiol. 295, 2178-2187. https://doi.org/10.1152/ajpheart.00748.2008
  52. Tatham, A. L., Crabtree, M. J., Warrick, N., Cai, S., Alp, N. J. and Channon, K. M. (2009) GTP cyclohydrolase I expression, protein and activity determine intracellular tetrahydrobiopterin levels, independent of GTP cyclohydrolase feedback regulatory protein expression. J. Biol. Chem. 284, 13660-13668. https://doi.org/10.1074/jbc.M807959200
  53. Linscheid, P., Schaffner, A., Blau, N. and Schoedon, G. (1998) Regulation of 6-pyruvoyltetrahydropterin synthase activity and messenger RNA abundance in human vascular endothelial cells. Circulation 98, 1703-1706. https://doi.org/10.1161/01.CIR.98.17.1703
  54. Franscini, N., Blau, N., Walter, R. B., Schaffner, A. and Schoedon, G. (2003) Critical role of interleukin-1beta for transcriptional regulation of endothelial 6-pyruvoyltetrahydropterin synthase. Arterioscler. Thromb. Vasc. Biol. 23, 50-53. https://doi.org/10.1161/01.ATV.0000099785.65848.F1
  55. Niederwieser, A., Shintaku, H., Hasler, T., Curtius, H. C., Lehmann, H., Guardamagna, O. and Schmidt, H. (1986) Prenatal diagnosis of "dihydrobiopterin synthetase" deficiency, a variant form of phenylketonuria. Eur. J. Pediatr. 145, 176-178. https://doi.org/10.1007/BF00446058
  56. Katoh, S. and Sueoka, T. (1984) Sepiapterin reductase exhibits a NADPH-dependent dicarbonyl reductase activity. Biochem. Biophys. Res. Commun. 118, 859-866. https://doi.org/10.1016/0006-291X(84)91474-8
  57. Ponzone, A., Spada, M., Ferraris, S., Dianzani, I. and de Sanctis, L. (2004) Dihydropteridine reductase deficiency in man: from biology to treatment. Med. Res. Rev. 24, 127-150. https://doi.org/10.1002/med.10055
  58. Wei, C. C., Wang, Z. Q., Tejero, J., Yang, Y. P., Hemann, C., Hille, R. and Stuehr, D. J. (2008) Catalytic reduction of a tetrahydrobiopterin radical within nitric-oxide synthase. J. Biol. Chem. 25, 11734-11742.
  59. Woodward, J. J., Nejatyjahromy, Y., Britt, R. D. and Marletta, M. A. (2010) Pterin-centered radical as a mechanistic probe of the second step of nitric oxide synthase. J. Am. Chem. Soc. 14, 5105-5113.
  60. Milstien, S. and Katusic, Z. (1999) Oxidation of tetrahydrobiopterin by peroxynitrite: implications for vascular endothelial function. Biochem. Biophys. Res. Commun. 263, 681-684. https://doi.org/10.1006/bbrc.1999.1422
  61. Rafferty, S. P., Boyington, J. C., Kulansky, R., Sun, P. D. and Malech, H. L. (1999) Stoichiometric arginine binding in the oxygenase domain of inducible nitric oxide synthase requires a single molecule of tetrahydrobiopterin per dimer. Biochem. Biophys. Res. Commun. 257, 344-347. https://doi.org/10.1006/bbrc.1999.0450
  62. Wever, R. M., Luscher, T. F., Cosentino, F. and Rabelink, T. J. (1998) Atherosclerosis and the two faces of endothelial nitric oxide synthase. Circulation 97, 108-112. https://doi.org/10.1161/01.CIR.97.1.108
  63. Vasquez-Vivar, J., Kalyanaraman, B., Martasek, P., Hogg, N., Masters, B. S., Karoui, H., Tordo, P. and Pritchard, K. A. Jr. (1998) Superoxide generation by endothelial nitric oxide synthase: the influence of cofactors. Proc. Natl. Acad. Sci. U.S.A. 95, 9220-9225. https://doi.org/10.1073/pnas.95.16.9220
  64. Crabtree, M. J., Smith, C. L., Lam, G., Goligorsky, M. S. and Gross, S. S. (2008) Ratio of 5,6,7,8-tetrahydrobiopterin to 7,8-dihydrobiopterin in endothelial cells determines glucose-elicited changes in NO vs. superoxide production by eNOS. Am. J. Physiol. Heart Circ. Physiol. 294, 1530-1540. https://doi.org/10.1152/ajpheart.00823.2007
  65. Vasquez-Vivar, J., Whitsett, J., Martasek, P., Hogg, N. and Kalyanaraman, B. (2001) Reaction of tetrahydrobiopterin with superoxide: EPR-kinetic analysis and characterization of the pteridine radical. Free Radic. Biol. Med. 31, 975-985. https://doi.org/10.1016/S0891-5849(01)00680-3
  66. Sun, J., Druhan, L. J. and Zweier, J. L. (2008) Dose dependent effects of reactive oxygen and nitrogen species on the function of neuronal nitric oxide synthase. Arch. Biochem. Biophys. 471, 126-133. https://doi.org/10.1016/j.abb.2008.01.003
  67. Sun, J., Druhan, L. J. and Zweier, J. L. (2010) Reactive oxygen and nitrogen species regulate inducible nitric oxide synthase function shifting the balance of nitric oxide and superoxide production. Arch. Biochem. Biophys. 494, 130-137. https://doi.org/10.1016/j.abb.2009.11.019
  68. Grobe, A. C., Wells, S. M., Benavidez, E., Oishi, P., Azakie, A., Fineman, J. R. and Black, S. M. (2006) Increased oxidative stress in lambs with increased pulmonary blood flow and pulmonary hypertension: role of NADPH oxidase and endothelial NO synthase. Am. J. Physiol. Lung Cell Mol. Physiol. 290, 1069-1077. https://doi.org/10.1152/ajplung.00408.2005
  69. Chrissobolis, S. and Faraci, F. M. (2008) Trends in molecular medicine. The role of oxidative stress and NADPH oxidase in cerebrovascular disease. Trends Mol. Med. 14, 495-502. https://doi.org/10.1016/j.molmed.2008.09.003
  70. Padmaja, S. and Huie, R. E. (1993) The reaction of nitric oxide with organic peroxyl radicals. Biochem. Biophys. Res. Commun. 195, 539-544. https://doi.org/10.1006/bbrc.1993.2079
  71. Davis, M. D., Kaufman, S. and Milstien, S. (1988) The auto- oxidation of tetrahydrobiopterin. Eur. J. Biochem. 173, 345-351. https://doi.org/10.1111/j.1432-1033.1988.tb14004.x
  72. Laursen, J. B., Somers, M., Kurz, S., McCann, L., Warnholtz, A., Freeman, B. A., Tarpey, M., Fukai, T. and Harrison, D. G. (2001) Endothelial regulation of vasomotion in apoE-deficient mice: implications for interactions between peroxynitrite and tetrahydrobiopterin. Circulation 103, 1282-1288. https://doi.org/10.1161/01.CIR.103.9.1282
  73. Shimizu, S., Ishii, M., Miyasaka, Y., Wajima, T., Negoro, T., Hagiwara, T. and Kiuchi, Y. (2005) Possible involvement of hydroxyl radical on the stimulation of tetrahydrobiopterin synthesis by hydrogen peroxide and peroxynitrite in vascular endothelial cells. Int. J. Biochem. Cell Biol. 37, 864-875. https://doi.org/10.1016/j.biocel.2004.11.003
  74. Brewer, G. J. (2007) Iron and copper toxicity in diseases of aging, particularly atherosclerosis and Alzheimer's disease. Exp. Biol. Med. 232, 323-335.
  75. Shimizu, S., Shiota, K., Yamamoto, S., Miyasaka, Y., Ishii, M., Watabe, T., Nishida, M., Mori, Y., Yamamoto, T. and Kiuchi, Y. (2003) Hydrogen peroxide stimulates tetrahydrobiopterin synthesis through the induction of GTP-cyclohydrolase I and increases nitric oxide synthase activity in vascular endothelial cells. Free Radic. Biol. Med. 34, 1343-1352. https://doi.org/10.1016/S0891-5849(03)00172-2
  76. Shimizu, S., Hiroi, T., Ishii, M., Hagiwara, T., Wajima, T., Miyazaki, A. and Kiuchi, Y. (2008) Hydrogen peroxide stimulates tetrahydrobiopterin synthesis through activation of the Jak2 tyrosine kinase pathway in vascular endothelial cells. Int. J. Biochem. Cell Biol. 40, 755-765. https://doi.org/10.1016/j.biocel.2007.10.011
  77. Chen, W., Druhan, L. J., Chen, C. A., Hemann, C., Chen, Y. R., Berka, V., Tsai, A. L. and Zweier, J. L. (2010) Peroxynitrite induces destruction of the tetrahydrobiopterin and heme in endothelial nitric oxide synthase: transition from reversible to irreversible enzyme inhibition. Biochemistry 49, 3129-3137. https://doi.org/10.1021/bi9016632
  78. Forstermann, U. (2006) Janus-faced role of endothelial NO synthase in vascular disease: uncoupling of oxygen reduction from NO synthesis and its pharmacological reversal. Biol. Chem. 387, 1521-1533. https://doi.org/10.1515/BC.2006.190
  79. Chalupsky, K. and Cai, H. (2005) Endothelial dihydrofolate reductase: critical for nitric oxide bioavailability and role in angiotensin II uncoupling of endothelial nitric oxide synthase. Proc. Natl. Acad. Sci. U.S.A. 102, 9056-9061. https://doi.org/10.1073/pnas.0409594102
  80. Crabtree, M. J., Tatham, A. L., Hale, A. B., Alp, N. J. and Channon, K. M. (2009) Critical role for tetrahydrobiopterin recycling by dihydrofolate reductase in regulation of endothelial nitric-oxide synthase coupling: relative importance of the de novo biopterin synthesis versus salvage pathways. J. Biol. Chem. 284, 28128-28136. https://doi.org/10.1074/jbc.M109.041483
  81. Lee, C. K., Han, J. S., Won, K. J., Jung, S. H., Park, H. J., Lee, H. M., Kim, J., Park, Y. S., Kim, H. J., Park, P. J., Park, T. K. and Kim, B. (2009) Diminished expression of dihydropteridine reductase is a potent biomarker for hypertensive vessels. Proteomics 9, 4851-4858. https://doi.org/10.1002/pmic.200800973
  82. Hasse, S., Gibbons, N. C., Rokos, H., Marles, L. K and Schallreuter, K. U. (2004) Perturbed 6-tetrahydrobiopterin recycling via decreased dihydropteridine reductase in vitiligo: more evidence for $H_2O_2$ stress. J. Invest. Dermatol. 122, 307-313. https://doi.org/10.1046/j.0022-202X.2004.22230.x
  83. Shinozaki, K., Hirayama, A., Nishio, Y., Yoshida, Y., Ohtani, T., Okamura, T., Masada, M., Kikkawa, R., Kodama, K. and Kashiwagi, A. (2001) Coronary endothelial dysfunction in the insulin-resistant state is linked to abnormal pteridine metabolism and vascular oxidative stress. J. Am. Coll. Cardiol. 38, 1821-1828. https://doi.org/10.1016/S0735-1097(01)01659-X
  84. Waring, P. (1986) The time-dependent inactivation of human brain dihydropteridine reductase by the oxidation products of L-dopa. Eur. J. Biochem. 3, 305-310. https://doi.org/10.1111/j.1432-1033.1968.tb19530.x
  85. Khoo, J. P., Zhao, L., Alp, N. J., Bendall, J. K., Nicoli, T., Rockett, K., Wilkins, M. R. and Channon, K. M. (2005) Pivotal role for endothelial tetrahydrobiopterin in pulmonary hypertension. Circulation 111, 2126-2133. https://doi.org/10.1161/01.CIR.0000162470.26840.89
  86. Nandi, M., Miller, A., Stidwill, R., Jacques, T. S., Lam, A. A., Haworth, S., Heales, S. and Vallance, P. (2005) Pulmonary hypertension in a GTP-cyclohydrolase 1-deficient mouse. Circulation 111, 2086-2090. https://doi.org/10.1161/01.CIR.0000163268.32638.F4
  87. Shang, T., Kotamraju, S., Zhao, H., Kalivendi, S. V., Hillard, C. J. and Kalyanaraman, B. (2005) Sepiapterin attenuates 1-methyl-4-phenylpyridinium-induced apoptosis in neuroblastoma cells transfected with neuronal NOS: role of tetrahydrobiopterin, nitric oxide and proteasome activation. Free Radic. Biol. Med. 39, 1059-1074. https://doi.org/10.1016/j.freeradbiomed.2005.05.022
  88. Cardaci, S., Filomeni, G., Rotilio, G. and Ciriolo, M. R. (2010) p38MAPK/p53 signaling axis mediates neuronal apoptosis in response to tetrahydrobiopterin-induced oxidative stress and glucose uptake inhibition: implication for neurodegeneration. Biochem. J. Published online [PMID: 20590525].
  89. Casadei, B. (2006) The emerging role of neuronal nitric oxide synthase in the regulation of myocardial function. Exp. Physiol. 91, 943-955. https://doi.org/10.1113/expphysiol.2006.035493

Cited by

  1. Administration of tetrahydrobiopterin improves the microcirculation and outcome in an ovine model of septic shock* vol.40, pp.10, 2012, https://doi.org/10.1097/CCM.0b013e31825b88ba
  2. Arginine and nitric oxide synthase: Regulatory mechanisms and cardiovascular aspects vol.58, pp.1, 2014, https://doi.org/10.1002/mnfr.201300033
  3. Oxidative stress and inhibition of nitric oxide generation underlie methotrexate-induced senescence in human colon cancer cells 2018, https://doi.org/10.1016/j.mad.2017.07.006
  4. Simultaneous quantification of tetrahydrobiopterin, dihydrobiopterin, and biopterin by liquid chromatography coupled electrospray tandem mass spectrometry vol.430, pp.2, 2012, https://doi.org/10.1016/j.ab.2012.08.019
  5. Tetrahydrobiopterin is functionally distinguishable from tetrahydrodictyopterin inDictyostelium discoideumAx2 vol.585, pp.19, 2011, https://doi.org/10.1016/j.febslet.2011.08.026
  6. A Pilot Study of Fluorodeoxyglucose Positron Emission Tomography Findings in Patients with Phenylketonuria before and during Sapropterin Supplementation vol.9, pp.3, 2013, https://doi.org/10.3988/jcn.2013.9.3.151
  7. Mögliche molekulare Mechanismen einer Spontanremission nach Hörsturz vol.59, pp.11, 2011, https://doi.org/10.1007/s00106-011-2358-0
  8. Hyperoxia but not ambient pressure decreases tetrahydrobiopterin level without affecting the enzymatic capability of nitric oxide synthase in human endothelial cells vol.113, pp.7, 2013, https://doi.org/10.1007/s00421-013-2595-x
  9. Combined analysis of Perca fluviatilis reproductive performance and oocyte proteomic profile vol.78, pp.2, 2012, https://doi.org/10.1016/j.theriogenology.2012.02.023
  10. The basis for folinic acid treatment in neuro-psychiatric disorders vol.126, 2016, https://doi.org/10.1016/j.biochi.2016.04.005
  11. Tetrahydropteridines possess antioxidant roles to guard against glucose-induced oxidative stress in Dictyostelium discoideum vol.46, pp.2, 2013, https://doi.org/10.5483/BMBRep.2013.46.2.128
  12. Nitric oxide synthase inhibition and oxidative stress in cardiovascular diseases: Possible therapeutic targets? vol.140, pp.3, 2013, https://doi.org/10.1016/j.pharmthera.2013.07.004
  13. Simplified HPLC methodology for quantifying biological pterins by selective oxidation vol.1055-1056, 2017, https://doi.org/10.1016/j.jchromb.2017.04.018
  14. Reply to Octavia, Wingler, Schmidt, and Moens vol.111, pp.1, 2011, https://doi.org/10.1152/japplphysiol.00495.2011
  15. Inorganic nitrite supplementation for healthy arterial aging vol.116, pp.5, 2014, https://doi.org/10.1152/japplphysiol.01100.2013