DOI QR코드

DOI QR Code

Dimethyl sulfoxide elevates hydrogen peroxide-mediated cell death in Saccharomyces cerevisiae by inhibiting the antioxidant function of methionine sulfoxide reductase A

  • Kwak, Geun-Hee (Department of Biochemistry and Molecular Biology, Yeungnam University College of Medicine) ;
  • Choi, Seung-Hee (Department of Biochemistry and Molecular Biology, Yeungnam University College of Medicine) ;
  • Kim, Hwa-Young (Department of Biochemistry and Molecular Biology, Yeungnam University College of Medicine)
  • Received : 2010.06.22
  • Accepted : 2010.08.03
  • Published : 2010.09.30

Abstract

Dimethyl sulfoxide (DMSO) can be reduced to dimethyl sulfide by MsrA, which stereospecifically catalyzes the reduction of methionine-S-sulfoxide to methionine. Our previous study showed that DMSO can competitively inhibit methionine sulfoxide reduction ability of yeast and mammalian MsrA in both in vitro and in vivo, and also act as a non-competitive inhibitor for mammalian MsrB2, specific for the reduction of methionine-R-sulfoxide, with lower inhibition effects. The present study investigated the effects of DMSO on the physiological antioxidant functions of methionine sulfoxide reductases. DMSO elevated hydrogen peroxide-mediated Saccharomyces cerevisiae cell death, whereas it protected human SK-Hep1 cells against oxidative stress. DMSO reduced the protein-carbonyl content in yeast cells in normal conditions, but markedly increased protein-carbonyl accumulation under oxidative stress. Using Msr deletion mutant yeast cells, we demonstrated the DMSO's selective inhibition of the antioxidant function of MsrA in S. cerevisiae, resulting in an increase in oxidative stress-induced cytotoxicity.

Keywords

References

  1. Santos, N. C., Figueira-Coelho, J., Martins-Silva, J. and Saldanha, C. (2003) Multidisciplinary utilization of dimethyl sulfoxide: pharmacological, cellular, and molecular aspects. Biochem. Pharmacol. 65, 1035-1041. https://doi.org/10.1016/S0006-2952(03)00002-9
  2. Liu, S. X., Athar, M., Lippai, I., Waldren, C. and Hei, T. K. (2001) Induction of oxyradicals by arsenic: implication for mechanism of genotoxicity. Proc. Natl. Acad. Sci. U.S.A. 98, 1643-1648. https://doi.org/10.1073/pnas.031482998
  3. Perez-Pasten, R., Martinez-Galero, E., Garduno-Siciliano, L., Lara, I. C. and Cevallos, G. C. (2006) Effects of dimethylsulphoxide on mice arsenite-induced dysmorphogenesis in embryo culture and cytotoxicity in embryo cells. Toxicol. Lett. 161, 167-173. https://doi.org/10.1016/j.toxlet.2005.09.001
  4. Sugimoto, K., Fujii, S., Takemasa, T. and Yamashita, K. (2000) Detection of intracellular nitric oxide using a combination of aldehyde fixatives with 4,5-diaminofluorescein diacetate. Histochem. Cell Biol. 113, 341-347.
  5. Kim, H. Y. and Gladyshev, V. N. (2007) Methionine sulfoxide reductases: selenoprotein forms and roles in antioxidant protein repair in mammals. Biochem. J. 407, 321-329. https://doi.org/10.1042/BJ20070929
  6. Weissbach, H., Resnick, L. and Brot, N. (2005) Methionine sulfoxide reductases: history and cellular role in protecting against oxidative damage. Biochim. Biophys. Acta 1703, 203-212. https://doi.org/10.1016/j.bbapap.2004.10.004
  7. Brot, N., Weissbach, L., Werth, J. and Weissbach, H. (1981) Enzymatic reduction of protein-bound methionine sulfoxide. Proc. Natl. Acad. Sci. U.S.A. 78, 2155-2158. https://doi.org/10.1073/pnas.78.4.2155
  8. Sharov, V. S., Ferrington, D. A., Squier, T. C. and Schoneich, C. (1999) Diastereoselective reduction of protein-bound methionine sulfoxide by methionine sulfoxide reductase. FEBS Lett. 455, 247-250. https://doi.org/10.1016/S0014-5793(99)00888-1
  9. Grimaud, R., Ezraty, B., Mitchell, J. K., Lafitte, D., Briand, C., Derrick, P. J. and Barras, F. (2001) Repair of oxidized proteins. Identification of a new methionine sulfoxide reductase. J. Biol. Chem. 276, 48915-48920. https://doi.org/10.1074/jbc.M105509200
  10. Lin, Z., Johnson, L. C., Weissbach, H., Brot, N., Lively, M. O. and Lowther, W. T. (2007) Free methionine-(R)-sulfoxide reductase from Escherichia coli reveals a new GAF domain function. Proc. Natl. Acad. Sci. U.S.A. 104, 9597-9602. https://doi.org/10.1073/pnas.0703774104
  11. Moskovitz, J., Weissbach, H. and Brot, N. (1996) Cloning the expression of a mammalian gene involved in the reduction of methionine sulfoxide residues in proteins. Proc. Natl. Acad. Sci. U.S.A. 93, 2095-2099. https://doi.org/10.1073/pnas.93.5.2095
  12. Kwak, G. H., Choi, S. H., Kim, J. R. and Kim, H. Y. (2009) Inhibition of methionine sulfoxide reduction by dimethyl sulfoxide. BMB Rep. 42, 580-585. https://doi.org/10.5483/BMBRep.2009.42.9.580
  13. Lee, B. C., Le, D. T. and Gladyshev, V. N. (2008) Mammals reduce methionine-S-sulfoxide with MsrA and are unable to reduce methionine-R-sulfoxide, and this function can be restored with a yeast reductase. J. Biol. Chem. 283, 28361-28369. https://doi.org/10.1074/jbc.M805059200
  14. Kim, H. Y. and Gladyshev, V. N. (2004) Methionine sulfoxide reduction in mammals: Characterization of methionine-R-sulfoxide reductases. Mol. Biol. Cell 15, 1055-1064. https://doi.org/10.1091/mbc.E03-08-0629
  15. Le, D. T., Lee, B. C., Marino, S. M., Zhang, Y., Fomenko, D. E., Kaya, A., Hacioglu, E., Kwak, G. H., Koc, A., Kim, H. Y. and Gladyshev, V. N. (2009) Functional analysis of free methionine-R-sulfoxide reductase from Saccharomyces cerevisiae. J. Biol. Chem. 284, 4354-4364. https://doi.org/10.1074/jbc.M805891200
  16. Delaye, L., Becerra, A., Orgel, L. and Lazcano, A. (2007) Molecular evolution of peptide methionine sulfoxide reductases (MsrA and MsrB): on the early development of a mechanism that protects against oxidative damage. J. Mol. Evol. 64, 15-32. https://doi.org/10.1007/s00239-005-0281-2
  17. Kryukov, G. V., Kumar, R. A., Koc, A., Sun, Z. and Gladyshev, V. N. (2002) Selenoprotein R is a zinc-containing stereo-specific methionine sulfoxide reductase. Proc. Natl. Acad. Sci. U.S.A. 99, 4245-4250. https://doi.org/10.1073/pnas.072603099
  18. Lee, B. C., Dikiy, A., Kim, H. Y. and Gladyshev, V. N. (2009) Functions and evolution of selenoprotein methionine sulfoxide reductases. Biochim. Biophys. Acta 1790, 1471-1477. https://doi.org/10.1016/j.bbagen.2009.04.014
  19. Alamuri, P. and Maier, R. J. (2004) Methionine sulphoxide reductase is an important antioxidant enzyme in the gastric pathogen Helicobacter pylori. Mol. Microbiol. 53, 1397-1406. https://doi.org/10.1111/j.1365-2958.2004.04190.x
  20. Kantorow, M., Hawse, J. R., Cowell, T. L., Benhamed, S., Pizarro, G. O., Reddy, V. N. and Hejtmancik, J. F. (2004) Methionine sulfoxide reductase A is important for lens cell viability and resistance to oxidative stress. Proc. Natl. Acad. Sci. U.S.A. 101, 9654-9659. https://doi.org/10.1073/pnas.0403532101
  21. Salmon, A. B., Perez, V. I., Bokov, A., Jernigan, A., Kim, G., Zhao, H., Levine, R. L. and Richardson, A. (2009) Lack of methionine sulfoxide reductase A in mice increases sensitivity to oxidative stress but does not diminish life span. FASEB J. 23, 3601-3608. https://doi.org/10.1096/fj.08-127415
  22. Marchetti, M. A., Pizarro, G. O., Sagher, D., Deamicis, C., Brot, N., Hejtmancik, J. F., Weissbach, H. and Kantorow, M. (2005) Methionine sulfoxide reductases B1, B2, and B3 are present in the human lens and confer oxidative stress resistance to lens cells. Invest. Ophthalmol. Vis. Sci. 46, 2107-2112. https://doi.org/10.1167/iovs.05-0018
  23. Koc, A., Gasch, A. P., Rutherford, J. C., Kim, H. Y. and Gladyshev, V. N. (2004) Methionine sulfoxide reductase regulation of yeast lifespan reveals reactive oxygen species-dependent and -independent components of aging. Proc. Natl. Acad. Sci. U.S.A. 101, 7999-8004. https://doi.org/10.1073/pnas.0307929101
  24. Moskovitz, J., Flescher, E., Berlett, B. S., Azare, J., Poston, J. M. and Stadtman, E. R. (1998) Overexpression of peptide-methionine sulfoxide reductase in Saccharomyces cerevisiae and human T cells provides them with high resistance to oxidative stress. Proc. Natl. Acad. Sci. U.S.A. 95, 14071-14075. https://doi.org/10.1073/pnas.95.24.14071
  25. Picot, C. R., Petropoulos, I., Perichon, M., Moreau, M., Nizard, C. and Friguet, B. (2005) Overexpression of MsrA protects WI-38 SV40 human fibroblasts against $H_2O_2$-mediated oxidative stress. Free Radic. Biol. Med. 39, 1332-1341. https://doi.org/10.1016/j.freeradbiomed.2005.06.017
  26. Cabreiro, F., Picot, C. R., Perichon, M., Castel, J., Friguet, B. and Petropoulos, I. (2008) Overexpression of mitochondrial methionine sulfoxide reductase B2 protects leukemia cells from oxidative stress-induced cell death and protein damage. J. Biol. Chem. 283, 16673-16681. https://doi.org/10.1074/jbc.M708580200
  27. Kwak, G. H., Kim, J. R. and Kim, H. Y. (2009) Expression, subcellular localization, and antioxidant role of mammalian methionine sulfoxide reductases in Saccharomyces cerevisiae. BMB Rep. 42, 113-118. https://doi.org/10.5483/BMBRep.2009.42.2.113
  28. Hansen, J. (1999) Inactivation of MXR1 abolishes formation of dimethyl sulfide from dimethyl sulfoxide in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 65, 3915-3919.
  29. Oien, D. and Moskovitz, J. (2007) Protein-carbonyl accumulation in the non-replicative senescence of the methionine sulfoxide reductase A (msrA) knockout yeast strain. Amino Acids 32, 603-606. https://doi.org/10.1007/s00726-006-0448-1
  30. Moskovitz, J., Bar-Noy, S., Williams, W. M., Requena, J., Berlett, B. S. and Stadtman, E. R. (2001) Methionine sulfoxide reductase (MsrA) is a regulator of antioxidant defense and lifespan in mammals. Proc. Natl. Acad. Sci. U.S.A. 98, 12920-12925. https://doi.org/10.1073/pnas.231472998
  31. Moskovitz, J. and Oien, D. B. (2010) Protein carbonyl and the methionine sulfoxide reductase system. Antioxid. Redox Signal. 12, 405-415. https://doi.org/10.1089/ars.2009.2809
  32. Etienne, F., Resnick, L., Sagher, D., Brot, N. and Weissbach, H. (2003) Reduction of Sulindac to its active metabolite, sulindac sulfide: assay and role of the methionine sulfoxide reductase system. Biochem. Biophys. Res. Commun. 312, 1005-1010. https://doi.org/10.1016/j.bbrc.2003.10.203
  33. Kim, H. Y. and Kim, J. R. (2008) Thioredoxin as a reducing agent for mammalian methionine sulfoxide reductases B lacking resolving cysteine. Biochem. Biophys. Res. Commun. 371, 490-494. https://doi.org/10.1016/j.bbrc.2008.04.101

Cited by

  1. Protection of l-methionine against H2O2-induced oxidative damage in mitochondria vol.50, pp.8, 2012, https://doi.org/10.1016/j.fct.2012.04.047
  2. Protective roles of methionine-R-sulfoxide reductase against stresses inSchizosaccharomyces pombe vol.54, pp.1, 2014, https://doi.org/10.1002/jobm.201200397
  3. Dimethyl sulphoxide modifies growth and senescence and induces the non-revertible petite phenotype in yeast vol.16, pp.2, 2016, https://doi.org/10.1093/femsyr/fow008
  4. Resveratrol preconditioning increases methionine sulfoxide reductases A expression and enhances resistance of human neuroblastoma cells to neurotoxins vol.24, pp.6, 2013, https://doi.org/10.1016/j.jnutbio.2012.08.005
  5. A specific and rapid colorimetric method to monitor the activity of methionine sulfoxide reductase A vol.53, pp.6-7, 2013, https://doi.org/10.1016/j.enzmictec.2013.08.005
  6. Intracellular repair of oxidation-damaged α-synuclein fails to target C-terminal modification sites vol.7, 2016, https://doi.org/10.1038/ncomms10251
  7. Dimethyl sulfoxide induces oxidative stress in the yeastSaccharomyces cerevisiae vol.13, pp.8, 2013, https://doi.org/10.1111/1567-1364.12091
  8. Evaluation of cell wall damage by dimethyl sulfoxide in Candida species vol.168, pp.8, 2017, https://doi.org/10.1016/j.resmic.2017.06.001
  9. vol.8, pp.5, 2017, https://doi.org/10.1128/mBio.01169-17
  10. Methionine Sulfoxide Reductases of Archaea vol.7, pp.10, 2018, https://doi.org/10.3390/antiox7100124