DOI QR코드

DOI QR Code

Neuroprotective Effects of Ginsenoside Rg3 against 24-OH-cholesterol-induced Cytotoxicity in Cortical Neurons

  • Roh, Yoon-Seok (Department of Veterinary Physiology and Department of Veterinary Pathology, College of Veterinary Medicine, Biosafety Research Institute, Chonbuk National University) ;
  • Kim, Hyoung-Bae (Department of Veterinary Physiology and Department of Veterinary Pathology, College of Veterinary Medicine, Biosafety Research Institute, Chonbuk National University) ;
  • Kang, Chang-Won (Department of Veterinary Physiology and Department of Veterinary Pathology, College of Veterinary Medicine, Biosafety Research Institute, Chonbuk National University) ;
  • Kim, Bum-Seok (Department of Veterinary Physiology and Department of Veterinary Pathology, College of Veterinary Medicine, Biosafety Research Institute, Chonbuk National University) ;
  • Nah, Seung-Yeol (Department of Physiology, College of Veterinary Medicine, Konkuk University) ;
  • Kim, Jong-Hoon (Department of Veterinary Physiology and Department of Veterinary Pathology, College of Veterinary Medicine, Biosafety Research Institute, Chonbuk National University)
  • Received : 2010.07.12
  • Accepted : 2010.08.16
  • Published : 2010.09.30

Abstract

Ginsenoside $Rg_3$ ($Rg_3$), one of the active ingredients in Panax ginseng, attenuates NMDA receptor-mediated currents in vitro and antagonizes NMDA receptors through a glycine modulatory site in rat cultured hippocampal neurons. In the present study, we examined the neuroprotective effects of $Rg_3$ on 24-hydroxycholesterol (24-OH-chol)-induced cytotoxicity in vitro. The results showed that $Rg_3$ treatment significantly and dose-dependently inhibited 24-OH-chol-induced cell death in rat cultured cortical neurons, with an $IC_{50}$ value of $28.7{\pm}7.5\;{\mu}m$. Furthermore, the $Rg_3$ treatment not only significantly reduced DNA damage, but also dose-dependently attenuated 24-OH-chol-induced caspase-3 activity. To study the mechanisms underlying the in vitro neuroprotective effects of $Rg_3$ against 25-OH-chol-induced cytotoxicity, we also examined the effect of $Rg_3$ on intracellular $Ca^{2+}$ elevations in cultured neurons and found that $Rg_3$ treatment dose-dependently inhibited increases in intracellular $Ca^{2+}$, with an $IC_{50}$ value of $40.37{\pm}12.88\;{\mu}m$. Additionally, $Rg_3$ treatment dose-dependently inhibited apoptosis with an $IC_{50}$ of $47.3{\pm}14.2\;{\mu}m$. Finally, after confirming the protective effect of $Rg_3$ using a terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling assay, we found that $Rg_3$ is an active component in ginseng-mediated neuroprotection. These results collectively indicate that $Rg_3$-induced neuroprotection against 24-OH-chol in rat cortical neurons might be achieved via inhibition of a 24-OH-chol-mediated $Ca^{2+}$ channel. This is the first report to employ cortical neurons to study the neuroprotective effects of $Rg_3$ against 24-OH-chol. In conclusion, $Rg_3$ was effective for protecting cells against 24-OH-chol-induced cytotoxicity in rat cortical neurons. This protective ability makes $Rg_3$ a promising agent in pathologies implicating neurodegeneration such as apoptosis or neuronal cell death.

Keywords

References

  1. Chang JY, Liu LZ. Neurotoxicity of cholesterol oxides on cultured cerebellar granule cells. Neurochem Int 1998; 32:317-323. https://doi.org/10.1016/S0197-0186(97)00103-4
  2. Imai H, Werthessen NT, Subramanyam V, LeQuesne PW, Soloway AH, Kanisawa M. Angiotoxicity of oxygenated sterols and possible precursors. Science 1980;207:651-653. https://doi.org/10.1126/science.7352277
  3. Hubbard RW, Ono Y, Sanchez A. Atherogenic effect of oxidized products of cholesterol. Prog Food Nutr Sci 1989; 13:17-44.
  4. Hughes H, Mathews B, Lenz ML, Guyton JR. Cytotoxicity of oxidized LDL to porcine aortic smooth muscle cells is associated with the oxysterols 7-ketocholesterol and 7-hydroxycholesterol. Arterioscler Thromb 1994;14:1177-1185. https://doi.org/10.1161/01.ATV.14.7.1177
  5. Brown AJ, Dean RT, Jessup W. Free and esterified oxysterol:formation during copper-oxidation of low density lipoprotein and uptake by macrophages. J Lipid Res 1996;37:320-335.
  6. Salonen JT, Nyyssonen K, Salonen R, Porkkala-Sarataho E, Tuomainen TP, Diczfalusy U, Bjorkhem I. Lipoprotein oxidation and progression of carotid atherosclerosis. Circulation 1997;95:840-845. https://doi.org/10.1161/01.CIR.95.4.840
  7. Steinberg D. Lewis A. Conner Memorial Lecture. Oxidative modification of LDL and atherogenesis. Circulation 1997;95:1062-1071. https://doi.org/10.1161/01.CIR.95.4.1062
  8. Sevanian A, Berliner J, Peterson H. Uptake, metabolism, and cytotoxicity of isomeric cholesterol-5,6-epoxides in rabbit aortic endothelial cells. J Lipid Res 1991;32:147-155.
  9. Ramasamy S, Boissonneault GA, Hennig B. Oxysterol-induced endothelial cell dysfunction in culture. J Am Coll Nutr 1992;11:532-538. https://doi.org/10.1080/07315724.1992.10718258
  10. Peng SK, Tham P, Taylor CB, Mikkelson B. Cytotoxicity of oxidation derivatives of cholesterol on cultured aortic smooth muscle cells and their effect on cholesterol biosynthesis. Am J Clin Nutr 1979;32:1033-1042. https://doi.org/10.1093/ajcn/32.5.1033
  11. Astruc M, Roussillon S, Defay R, Descomps B, Crastes de Paulet A. DNA and cholesterol biosynthesis in synchronized embryonic rat fibroblasts. II. Effects of sterol biosynthesis inhibitors on cell division. Biochim Biophys Acta 1983;763:11-18. https://doi.org/10.1016/0167-4889(83)90019-8
  12. Hessler JR, Morel DW, Lewis LJ, Chisolm GM. Lipoprotein oxidation and lipoprotein-induced cytotoxicity. Arteriosclerosis 1983;3:215-222. https://doi.org/10.1161/01.ATV.3.3.215
  13. Chang JY, Liu LZ. 25-Hydroxycholesterol causes death but does not prevent nerve growth factor-induced neurite outgrowth in PC12 cells. Neurochem Int 1997;31:517-523. https://doi.org/10.1016/S0197-0186(97)00020-X
  14. Chang JY, Phelan KD, Liu LZ. Neurotoxicity of 25-OH-cholesterol on NGF-differentiated PC12 cells. Neurochem Res 1998;23:7-16. https://doi.org/10.1023/A:1022437000893
  15. Chang JY, Chavis JA, Liu LZ, Drew PD. Cholesterol oxides induce programmed cell death in microglial cells. Biochem Biophys Res Commun 1998;249:817-821. https://doi.org/10.1006/bbrc.1998.9237
  16. Kolsch H, Lutjohann D, Tulke A, Bjorkhem I, Rao ML. The neurotoxic effect of 24-hydroxycholesterol on SH-SY5Y human neuroblastoma cells. Brain Res 1999; 818:171-175. https://doi.org/10.1016/S0006-8993(98)01274-8
  17. Jeong SM, Nah SY. Ginseng and ion channels: are ginsenosides, active component of Panax ginseng, differential modulator of ion channels? J Ginseng Res 2005;29:19-26. https://doi.org/10.5142/JGR.2005.29.1.019
  18. Kim YC, Kim SR, Markelonis GJ, Oh TH. Ginsenosides Rb1 and Rg3 protect cultured rat cortical cells from glutamate-induced neurodegeneration. J Neurosci Res 1998;53:426-432. https://doi.org/10.1002/(SICI)1097-4547(19980815)53:4<426::AID-JNR4>3.0.CO;2-8
  19. Liao B, Newmark H, Zhou R. Neuroprotective effects of ginseng total saponin and ginsenosides Rb1 and Rg1 on spinal cord neurons in vitro. Exp Neurol 2002;173:224-234. https://doi.org/10.1006/exnr.2001.7841
  20. Seong YH, Shin CS, Kim HS, Baba A. Inhibitory effect of ginseng total saponins on glutamate-induced swelling of cultured astrocytes. Biol Pharm Bull 1995;18:1776-1778. https://doi.org/10.1248/bpb.18.1776
  21. Abe K, Cho SI, Kitagawa I, Nishiyama N, Saito H. Differential effects of ginsenoside Rb1 and malonylginsen oside Rb1 on long-term potentiation in the dentate gyrus of rats. Brain Res 1994;649:7-11. https://doi.org/10.1016/0006-8993(94)91042-1
  22. Yoon SR, Nah JJ, Shin YH, Kim SK, Nam KY, Choi HS, Nah SY. Ginsenosides induce differential antinociception and inhibit substance P induced-nociceptive response in mice. Life Sci 1998;62:319-325. https://doi.org/10.1016/S0024-3205(97)01113-2
  23. Lee JH, Kim SR, Bae CS, Kim D, Hong H, Nah S. Protective effect of ginsenosides, active ingredients of Panax ginseng, on kainic acid-induced neurotoxicity in rat hippocampus. Neurosci Lett 2002;325:129-133. https://doi.org/10.1016/S0304-3940(02)00256-2
  24. Kim S, Ahn K, Oh TH, Nah SY, Rhim H. Inhibitory effect of ginsenosides on NMDA receptor-mediated signals in rat hippocampal neurons. Biochem Biophys Res Commun 2002;296:247-254. https://doi.org/10.1016/S0006-291X(02)00870-7
  25. Bae EA, Hyun YJ, Choo MK, Oh JK, Ryu JH, Kim DH. Protective effect of fermented red ginseng on a transient focal ischemic rats. Arch Pharm Res 2004;27:1136-1140. https://doi.org/10.1007/BF02975119
  26. Tian J, Fu F, Geng M, Jiang Y, Yang J, Jiang W, Wang C, Liu K. Neuroprotective effect of 20(S)-ginsenoside Rg3 on cerebral ischemia in rats. Neurosci Lett 2005;374:92-97. https://doi.org/10.1016/j.neulet.2004.10.030
  27. Choi DW. Ionic dependence of glutamate neurotoxicity. J Neurosci 1987;7:369-379. https://doi.org/10.1523/JNEUROSCI.07-02-00369.1987
  28. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 1983;65:55-63. https://doi.org/10.1016/0022-1759(83)90303-4
  29. Kim JH, Kim S, Yoon IS, Lee JH, Jang BJ, Jeong SM, Lee JH, Lee BH, Han JS, Oh S, et al. Protective effects of ginseng saponins on 3-nitropropionic acid-induced striatal degeneration in rats. Neuropharmacology 2005;48:743-756. https://doi.org/10.1016/j.neuropharm.2004.12.013
  30. Lee SJ, Lee KW. Protective effect of (-)-epigallocatechin gallate against advanced glycation endproducts-induced injury in neuronal cells. Biol Pharm Bull 2007;30:1369-1373. https://doi.org/10.1248/bpb.30.1369
  31. Koh JY, Goldberg MP, Hartley DM, Choi DW. Non-NMDA receptor-mediated neurotoxicity in cortical culture. J Neurosci 1990;10:693-705. https://doi.org/10.1523/JNEUROSCI.10-02-00693.1990
  32. Sathishkumar K, Murthy SN, Uppu RM. Cytotoxic effects of oxysterols produced during ozonolysis of cholesterol in murine GT1-7 hypothalamic neurons. Free Radic Res 2007;41:82-88. https://doi.org/10.1080/10715760600950566
  33. Nah SY. Ginseng: recent advances and trends. J Ginseng Res 1997;21:1-12.
  34. Chu GX, Chen X. Protective effect of ginsenosides on acute cerebral ischemia/reperfusion injury of rats. Chin J Pharmacol Toxicol 1989;3:18-23.
  35. Kim S, Rhim H. Ginsenosides inhibit NMDA receptor-mediated epileptic discharges in cultured hippocampal neurons. Arch Pharm Res 2004;27:524-530. https://doi.org/10.1007/BF02980126
  36. Deshpande SB, Fukuda A, Nishino H. 3-Nitropropionic acid increases the intracellular $Ca^{2+}$ in cultured astrocytes by reverse operation of the $Na^+-Ca^{2+}$ exchanger. Exp Neurol 1997;145:38-45. https://doi.org/10.1006/exnr.1997.6457
  37. Nah SY, McCleskey EW. Ginseng root extract inhibits calcium channels in rat sensory neurons through a similar path, but different receptor, as mu-type opioids. J Ethnopharmacol 1994;42:45-51. https://doi.org/10.1016/0378-8741(94)90022-1
  38. Nah SY, Park HJ, McCleskey EW. A trace component of ginseng that inhibits $Ca^{2+}$ channels through a pertussis toxin-sensitive G protein. Proc Natl Acad Sci U S A 1995;92:8739-8743. https://doi.org/10.1073/pnas.92.19.8739
  39. Kim HS, Lee JH, Goo YS, Nah SY. Effects of ginsenosides on $Ca^{2+}$ channels and membrane capacitance in rat adrenal chromaffin cells. Brain Res Bull 1998;46:245-251. https://doi.org/10.1016/S0361-9230(98)00014-8
  40. Rhim H, Kim H, Lee DY, Oh TH, Nah SY. Ginseng and ginsenoside Rg3, a newly identified active ingredient of ginseng, modulate $Ca^{2+}$ channel currents in rat sensory neurons. Eur J Pharmacol 2002;436:151-158. https://doi.org/10.1016/S0014-2999(01)01613-2
  41. Ong WY, Goh EW, Lu XR, Farooqui AA, Patel SC, Halliwell B. Increase in cholesterol and cholesterol oxidation products, and role of cholesterol oxidation products in kainate-induced neuronal injury. Brain Pathol 2003;13:250-262. https://doi.org/10.1111/j.1750-3639.2003.tb00026.x

Cited by

  1. Lipid-Soluble Ginseng Extract Induces Apoptosis and G0/G1 Cell Cycle Arrest in NCI-H460 Human Lung Cancer Cells vol.66, pp.2, 2011, https://doi.org/10.1007/s11130-011-0232-6
  2. JB115 on Mouse Splenocytes vol.16, pp.4, 2012, https://doi.org/10.4196/kjpp.2012.16.4.225
  3. BAY 11-7082 Is a Broad-Spectrum Inhibitor with Anti-Inflammatory Activity against Multiple Targets vol.2012, pp.1466-1861, 2012, https://doi.org/10.1155/2012/416036
  4. Production by Suppression of the AP-1/p38 Pathway vol.2012, pp.1466-1861, 2012, https://doi.org/10.1155/2012/489810
  5. Syk/Src Pathway-Targeted Inhibition of Skin Inflammatory Responses by Carnosic Acid vol.2012, pp.1466-1861, 2012, https://doi.org/10.1155/2012/781375
  6. B-Dependent Manner vol.2014, pp.1466-1861, 2014, https://doi.org/10.1155/2014/658351
  7. Modulates the Inflammatory Responses Mediated by Monocytes and Macrophages vol.2014, pp.1466-1861, 2014, https://doi.org/10.1155/2014/405158
  8. B/AP-1-Targeted Inhibition of Macrophage-Mediated Inflammatory Responses by Depigmenting Compound AP736 Derived from Natural 1,3-Diphenylpropane Skeleton vol.2014, pp.1466-1861, 2014, https://doi.org/10.1155/2014/354843
  9. B and AP-1 activity vol.36, pp.5, 2014, https://doi.org/10.3109/08923973.2014.947036
  10. B-Mediated Inflammatory Response vol.2015, pp.1466-1861, 2015, https://doi.org/10.1155/2015/143025
  11. Methanol extract of Osbeckia stellata suppresses lipopolysaccharide- and HCl/ethanol-induced inflammatory responses by inhibiting Src/Syk and IRAK1 vol.143, pp.3, 2010, https://doi.org/10.1016/j.jep.2012.08.015