DOI QR코드

DOI QR Code

Development and Physical Properties of Low-Trans Spread Fat from Canola and Fully Hydrogenated Soybean Oil by Lipase-Catalyzed Synthesis

카놀라유와 대두극도경화유로부터 효소적으로 합성된 저트랜스 스프레드 고체지의 특성

  • Kim, Young-Joo (Dept. of Food Science and Technology, Chungnam National University) ;
  • Lyu, Hyun-Kyeong (Dept. of Food Science and Technology, Chungnam National University) ;
  • Shin, Jung-Ah (Dept. of Food Science and Technology, Chungnam National University) ;
  • Lee, Ki-Teak (Dept. of Food Science and Technology, Chungnam National University)
  • Received : 2010.05.14
  • Accepted : 2010.08.18
  • Published : 2010.09.30

Abstract

Low-trans spread fat (LTSF) was produced by lipase-catalyzed synthesis of canola (CO) and fully hydrogenated soybean oil (FHSBO) at 65:35 (w/w). Blend of CO and FHSBO with 65:35 ratio was interesterified using Lipozyme TLIM (immobilized Thermomyces lanuginosus, 20% of total substrate) in a 1 L-batch type reactor at $70^{\circ}C$ with 500 rpm for 24 hr. Then, physicochemical melting properties of LTSF were compared with commercial spread fat. At $20^{\circ}C$, solid fat contents (SFC) of commercial spread fat as a control and LTSF were similar, showing 19.1 and 18.1%, respectively. Major compositional fatty acids of LTSF were C18:0, C18:1 and C18:2 (29.2, 41.8 and 13.3 wt%, respectively). Trans fatty acid content of the LTSF (0.2 wt%) was lower than that of commercial spread fat (5.5 wt%). In the RP-HPLC analysis from LTSF, major triacylglycerol (TAG) molecules were SOL (stearoyl-oleoyl-linoleyl), SOO, POS/PSP, and SOS. Also, polymorphic form and x-ray diffraction of LTSF showed coexistence of $\beta$' and $\beta$ form crystals.

카놀라유와 대두극도경화유를 기질로 이용하여 저트랜스 스프레드 제조 시에 사용할 수 있는 LTSF을 효소적 interesterification 반응을 이용하여 합성하였고, 제조된 LTSF의 온도별 SFC 함량, 반응 후 TAG 조성의 변화 및 결정형을 살펴보았다. DSC를 이용한 SFC 분석결과, LTSF와 시중에서 유통되는 스프레드로부터 획득한 고체지간에 약 $20{\sim}35^{\circ}C$의 범위에서 유사한 고체지 함량을 보임에 따라 합성된 LTSF는 적합한 물성을 가지는 스프레드 제조 시에 사용할 수 있을 것으로 사료된다. LTSF의 지방산 조성은 C18:0 (29.2 wt%), C18:1(41.8 wt%), C18:2(13.3 wt%)가 전체 지방산 조성의 80% 이상 구성되어 있으며, 총 트랜스 지방산(${\Sigma}TFA$)의 함량은 시중 유통 스프레드 고체지보다 훨씬 적은 0.2 wt%로 미량 검출되었다. Sn-2 position에 분포된 지방산 조성은 C18:0(31.5 wt%), C18:1(41.4 wt%), C18:2(12.1 wt%)로 구성되었고, sn-1,3 position에 위치한 지방산 조성도 C18:0(28.1 wt%), C18:1(42.1 wt%), C18:2(13.9 wt%)로 구성되었다. Reversed-phase HPLC 분석결과, 카놀라유는 LOO와 OOO로 구성되어 있었으며, 대두극도경화유는 PSS와 SSS의 주된 TAG 조성을 나타내었다. 두 기질을 사용하여 대량 합성된 LTSF의 반응 전후 TAG 조성을 비교해 보면, LOO와 OOO, SSS는 반응 후 그 수치가 줄어든 반면, SOL과 SOO는 각각 2.3에서 19.4 area%로, 0.5에서 26.4 area%로 증가하였으며, 새로운 TAG로서 POS/PSP와 SOS가 각각 12.6 area%와 16.5 area% 정도 생성되었다. LTSF의 결정형태를 알아보기 위하여 polarized light microscopy와 x-ray diffraction 분석을 수행한 결과, 결정크기는 작고 조밀하여 부드러운 조직감을 나타낼 것으로 생각되며 일반적으로 마가린이 $\beta$'형일 때 바람직하다고 보고 된 바와 같이, 합성한 LTSF은 $\beta$형도 공존하지만 $\beta$'형이 우세하게 나타내어 스프레드의 물성에 적합할 것으로 사료된다.

Keywords

References

  1. Fomuso LB, Akoh CC. 2001. Enzymatic modification of high-laurate canola to produce margarine fat. J Agric Food Chem 49: 4482-4487. https://doi.org/10.1021/jf010444u
  2. Petrauskaite V, De Greyt W, Kellens M, Huyghebaert A. 1998. Physical and chemical properties of trans-free fats produced by chemical interesterification of vegetable oil blends. J Am Oil Chem Soc 75: 489-493 https://doi.org/10.1007/s11746-998-0252-z
  3. Jung MY. 2001. Soybean oil refining and processing for industrial usage (margarine and spread). Korea Soybean Digest 18: 47-56.
  4. Kim YM, Heo OS, Lee KT. 2007. Analysis of trans fatty acid and crude fat contents of bakery foods in Chungcheong province. J East Asian Soc Dietary Life 17: 540- 546.
  5. Lumor SE, Jones KC, Ashby R, Strahan G, Kim BH, Lee GC, Shaw JF, Kays SE, Chang SW, Foglia TA, Akoh CC. 2007. Synthesis and characterization of canola oil-stearic acid-based trans-free structured lipids for possible margarine application. J Agric Food Chem 55: 10692-10702. https://doi.org/10.1021/jf0710175
  6. Hwang PY, Kim YM, Lee KT. 2007. Comparison of the bakery products made commercial fat or low trans fat. J East Asian Soc Dietary Life 17: 64-71.
  7. Gil BI, Rho JH. 2007. Hazardous effect of dietary trans fats on human health and regulations. Korean J Soc Food Cookery Sci 23: 1015-1024.
  8. Shin JA, Akoh CC, Lee KT. 2009. Production and physicochemical properties of functional-butterfat through enzymatic interesterification in a continuous reactor. J Agric Food Chem 57: 888-900. https://doi.org/10.1021/jf802678a
  9. Kim JY, Lee KT. 2009. Enzymatic synthesis of low trans fats using rice bran oil, palm stearin and high oleic sunflower seed oil. J Korean Soc Food Sci Nutr 38: 470-478. https://doi.org/10.3746/jkfn.2009.38.4.470
  10. Kim JY, Lee KT. 2009. Characterization of scaled-up low-trans shortening from rice bran oil and high oleic sunflower seed oil with batch type reactor. J Korean Soc Food Sci Nutr 38: 338-345. https://doi.org/10.3746/jkfn.2009.38.3.338
  11. Kim NS, Lee KT. 2004. Enzymatic synthesis of structured lipids containing conjugated linoleic acid from extracted corn and peanut oil. J Korean Soc Food Sci Nutr 33: 1000-1005. https://doi.org/10.3746/jkfn.2004.33.6.1000
  12. Mensink RP. 2005. Effects of stearic acid on plasma lipid and lipoproteins in humans. Lipids 40: 1201-1205. https://doi.org/10.1007/s11745-005-1486-x
  13. Jang YS. 2002. Prospect and situation of quality improvement in oilseed rape. Korean J Crop Sci 47: 175-185.
  14. KFDA. 2006. Department of food standardization, labeling of trans fats. Korea Food & Drug Administration, Seoul, Korea. p 2-10.
  15. Fomuso LB, Akoh CC. 2003. Lipase-catalyzed acidolysis of olive oil and caprylic acid in a bench-scale packed bed bioreactor. Food Res Int 35: 15-21. https://doi.org/10.1016/S0963-9969(00)00158-7
  16. Osorio NM, Fonseca MMR, Ferreira-Dias S. 2006. Operational stability of Thermomyces anuginose lipase during interesterification of fat in continuous packed-bed reactors. Eur J Lipid Sci Technol 108: 545-553. https://doi.org/10.1002/ejlt.200600029
  17. Ribeiro APB, Grimaldi R, Gioielli LA, Goncalves LAG. 2009. Zero trans fats from soybean oil and fully hydrogenated soybean oil: physico-chemical properties and food applications. Food Res Int 42: 401-410. https://doi.org/10.1016/j.foodres.2009.01.012
  18. Widlak N, Hartel R, Narine S. 2001. Crystallization and solidification properties of lipids. In Polymorphism and Texture of Fats. deMan JM, deMan L, eds. AOCS Press, Champaign, IL, USA. p 225-235.
  19. Lee JH, Akoh CC, Lee KT. 2008. Physical properties of trans-free bakery shortening produced by lipase-catalyzed interesterification. J Am Oil Chem Soc 85: 1-11. https://doi.org/10.1007/s11746-007-1155-0
  20. D’Souza V, deMan JM, deMan L. 1990. Short spacings and polymorphic forms of natural and commercial solid fats: a review. J Am Oil Chem Soc 67: 835-843. https://doi.org/10.1007/BF02540502

Cited by

  1. Optimization of Acetone-Fractionation for 1-Palmitoyl-2-Oleoyl-3-Oleoyl Glycerol and 1-Palmitoyl-2-Oleoyl-3-Palmitoyl Glycerol by Response Surface Methodology vol.40, pp.7, 2011, https://doi.org/10.3746/jkfn.2011.40.7.975