DOI QR코드

DOI QR Code

Codium fragile Ethanol Extraction Inhibited Inflammatory Response through the Inhibition of JNK Phosphorylation

  • Han, Sin-Hee (Department of Herbal Crop Research, National Institute of Horticultural & Herbal Science, RDA) ;
  • Kim, Young-Guk (Department of Herbal Crop Research, National Institute of Horticultural & Herbal Science, RDA) ;
  • Lee, Su-Hwan (Department of Herbal Crop Research, National Institute of Horticultural & Herbal Science, RDA) ;
  • Park, Chung-Berm (Department of Herbal Crop Research, National Institute of Horticultural & Herbal Science, RDA) ;
  • Choi, Han-Gil (Faculty of Biological Science and Institute of Biotechnology, Wonkwang University) ;
  • Jang, Hye-Jin (Department of Oriental Pharmacy, College of Pharmacy, Wonkwang University, Wonkwang Oriental Medicines Research Institute) ;
  • Lee, Young-Seob (Department of Oriental Pharmacy, College of Pharmacy, Wonkwang University, Wonkwang Oriental Medicines Research Institute) ;
  • Kwon, Dong-Yeul (Department of Oriental Pharmacy, College of Pharmacy, Wonkwang University, Wonkwang Oriental Medicines Research Institute)
  • Received : 2010.06.25
  • Accepted : 2010.08.11
  • Published : 2010.09.30

Abstract

Codium fragile (CF) is an edible green alga consumed as a traditional food source in Korea. In this study, the ethanol extract of CF was evaluated to determine if it has anti-inflammatory activity. Lipopolysaccharide (LPS), a toxin from bacteria, is a potent inducer of inflammatory cytokines, such as tumor necrosis factor (TNF)-$\alpha$ and interleukin (IL)-6. Therefore, we studied whether CF extracts have an anti-inflammatory effect in LPS-induced murine macrophage cell lines (RAW 264.7). In the present study, IL-6 production was measured using an enzyme-linked immunosorbent assay (ELISA), prostaglandin $E_2$($PGE_2$) production was measured using the EIA kit, and cyclooxygenase (COX)-2 and mitogen-activated protein kinase (MAPK) activation were determined by Western blot analysis. IL-6 mRNA, COX-2 mRNA and iNOS mRNA expression were measured using reverse transcription-polymerase chain reaction (RT-PCR). The results indicated that CF extracts inhibit LPS-induced IL-6, NO and PGE2 production in a dose-dependent manner, as well as expression of iNOS and COX-2. CF extracts significantly inhibited LPS-induced c-Jun N-terminal kinase (JNK) 1/2 phosphorylation. Taken together, these findings may help elucidate the mechanism by which CF modulates RAW 264.7 cell activation under inflammatory conditions.

Keywords

References

  1. Medzhitov R, Janeway CA Jr. 1998. An ancient system of host defense. Curr Opin Immuno 10: 12-15. https://doi.org/10.1016/S0952-7915(98)80024-1
  2. Hoffmann JA, Kafatos FC, Janeway CA, Ezekowitz RA. 1999. Phylogenetic perspectives in innate immunity. Science 284: 1313-1318. https://doi.org/10.1126/science.284.5418.1313
  3. Dziarski R, Ulmer AJ, Gupta D. 2000. Interactions of CD14 with components of Gram-positive bacteria. Chem Immunol 74: 83-107.
  4. Schleifer KH, Kandler O. 1972. Bacteriol Rev 36: 407-477.
  5. Wang Q, Dziarski R, Kirschning CJ, Muzio M, Gupta D. 2001. Infect Immun 69: 2270-2276. https://doi.org/10.1128/IAI.69.4.2270-2276.2001
  6. Xu Z, Dziarski R, Wang Q, Swartz K, Sakamoto KM, Gupta D. 2001. J Immunol 167: 6975-6982 https://doi.org/10.4049/jimmunol.167.12.6975
  7. Bhakdi S, Klonisch T, Nuber P, Fischer W. 1991. Infect Immun 59: 4614-4620.
  8. Mattsson E, Verhage L, Rollof J, Fleer A, Verhoef J, van Dijk H. 1993. Peptidoglycan and teichoic acid from Staphylococcus epidermidis stimulate human monocytes to release tumour necrosis factor, interleukin-1 ${\beta}$ and interleukin-6. FEMS Immunol Med Microbiol 7: 281-287.
  9. Pierce GF. 1990. Macrophages: important physiologic and pathologic sources of polypeptide growth factors. Am J Respir Cell Mol Biol 2: 233-234. https://doi.org/10.1165/ajrcmb/2.3.233
  10. Simons RK, Junger WG, Loomis WH, Hoyt DB. 1996. Acute lung injury in endotoxemic rats is associated with sustained circulating IL-6 levels and intrapulmonary CINC activity and neutrophil recruitment role of circulating TNF-alpha and IL-beta? Shock 6: 39-45. https://doi.org/10.1097/00024382-199607000-00009
  11. Guslandi M. 1998. Nitric oxide and inflammatory bowel disease. Eur J Clin Invest 28: 904-907. https://doi.org/10.1046/j.1365-2362.1998.00377.x
  12. Ritchlin CT, Haas-Smith SA, Li P, Hicks DG, Schwarz EM. 2003. Mechanisms of $TNF-{\alpha}$ and RANKL-mediated osteoclastogenesis and bone resorption in psoriatic arthritis. J Clin Invest 111: 821-831. https://doi.org/10.1172/JCI200316069
  13. Chen C, Chen YH, Lin WW. 1999. Involvement of p38 mitogen-activated protein kinase in lipopolysaccharide-induced iNOS and COX-2 expression in J774 macrophage. Immunology 97: 124-129. https://doi.org/10.1046/j.1365-2567.1999.00747.x
  14. Chan ED, Riches DW. 1998. Potential role of the JNK/SAPK signal transduction pathway in the induction of iNOS by $TNF-{\alpha}$ Biochem Biophys Res Commun 253: 790-796. https://doi.org/10.1006/bbrc.1998.9857
  15. Kim YH, Lee SH, Lee JY, Choi SW, Park JW, Kwon TK. 2004. Triptolide inhibits murine inducible nitric oxide synthase expression by down-regulating lipopolysaccharideinduced activity of nuclear factor-kappa B and c-Jun $NH_2-terminal$ kinase. Eur J Pharmacol 494: 1-9. https://doi.org/10.1016/j.ejphar.2004.04.040
  16. Zhu W, Chiu LCM, Ooi VEC, Chan PKS, Ang PO. 2006. Antiviral property and mechanisms of a sulphated polysaccharide from the brown alga Sargassum patens against Herpes simplex virus type 1. Phytomedicine 13: 695-701. https://doi.org/10.1016/j.phymed.2005.11.003
  17. Oh KB, Lee JH, Chung SC, Shin J, Shin HJ, Kim HK, Lee HS. 2008. Antimicrobial activities of the bromophenols from the red alga Odonthalia corymbifera and some synthetic derivatives. Bioorg Med Chem Lett 18: 104- 108. https://doi.org/10.1016/j.bmcl.2007.11.003
  18. Bennamara A, Abourriche A, Berrada M, Charrouf M, Chaib N, Boudouma M, Garneau FX. 1999. Methoxybifurcarenone: An antifungal and antibacterial meroditerpenoid from the brown alga Cystoseira tamariscifolia. Phytochemistry 52: 37-40. https://doi.org/10.1016/S0031-9422(99)00040-0
  19. Glombitza KW, Koch M. 1989. Secondary metabolites of pharmaceutical potential. In Algal and Cyanobacterial Biotechnology. Cresswell RC, Rees TAV, Shah N, eds. Longman Scientific & Technical, Harlow, Essex, England. p 161-238.
  20. Kwon HJ, Bae SY, Kim KH, Han CH, Cho SH, Nam SW, Choi YH, Kim BW. 2007. Induction of apoptosis in HeLa cells by ethanolic extract of Corallina pilulifera. Food Chem 104: 196-201. https://doi.org/10.1016/j.foodchem.2006.11.031
  21. Cavas L, Baskin Y, Yurdakoc K, Olgun N. 2006. Antiproliferative and newly attributed apoptotic activities from an invasive marine alga: Caulerpa racemosa var. cylindracea. J Exp Mar Biol Ecol 339: 111-119. https://doi.org/10.1016/j.jembe.2006.07.019
  22. Athukorala Y, Kim KN, Jeon YJ. 2006. Antiproliferative and antioxidant properties of an enzymatic hydrolysate from brown alga, Ecklonia cava. Food Chem Toxicol 44: 1065-1074. https://doi.org/10.1016/j.fct.2006.01.011
  23. Zhou G, Xin H, Sheng W, Sun Y, Li Z, Xu Z. 2005. In vivo growth inhibition of S180 tumor by mixture of 5-Fu and low molecular ${\lamda}-carrageenan$ from Chondrus ocellatus. Pharmacol Res 51: 153-157. https://doi.org/10.1016/j.phrs.2004.07.003
  24. Zhang YS. 1994. Dictionary of Chinese marine drugs. China Ocean Press, Beijing, China. p 507.
  25. MacMicking J, Xie QW, Nathan C. 1997. Nitric oxide and macrophage function. Annu Rev Immunol 15: 323-350. https://doi.org/10.1146/annurev.immunol.15.1.323
  26. Ohshima H, Bartsch H. 1994. Chronic infections and inflammatory processes as cancer risk factors: possible role of nitric oxide in carcinogenesis. Mutat Res 305: 253-264. https://doi.org/10.1016/0027-5107(94)90245-3
  27. Szabo C. 1995. Alterations in nitric oxide production in various forms of circulatory shock. New Horiz 3: 2-32.
  28. Koo TH, Lee JH, Park YJ, Hong YS, Kim HS, Kim KW, Lee JJ. 2001. A sesquiterpene lactone, costunolide, from Magnolia grandiflora inhibits NF-kappa B by targeting I kappa B phosphorylation. Planta Med 67: 103-107. https://doi.org/10.1055/s-2001-11503
  29. Johnson GL, Lapadat R. 2002. Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science 298: 1911-1912. https://doi.org/10.1126/science.1072682
  30. Kang OH, Lee GH, Choi HJ, Park PS, Chae HS, Jeong SI, Kim YC, Sohn DH, Park H, Lee JH, Kwon DY. 2007. Ethyl acetate extract from Angelica Dahuricae Radix inhibits lipopolysaccharide-induced production of nitric oxide, prostaglandin E2 and tumor necrosis factor-alpha via mitogen-activated protein kinases and nuclear factor-kappa B in macrophages. Pharmacol Res 55: 263-270. https://doi.org/10.1016/j.phrs.2006.12.001
  31. Chen C, Chen YH, Lin WW. 1999. Involvement of p38 mitogen-activated protein kinase in lipopolysaccharide- induced iNOS and COX-2 expression in J774 macrophages. Immunology 97: 124-129. https://doi.org/10.1046/j.1365-2567.1999.00747.x
  32. Kim SH, Kim J, Sharma RP. 2004. Inhibition of p38 and ERK MAP kinases blocks endotoxin-induced nitric oxide production and differentially modulates cytokine expression. Pharmacol Res 49: 433-439. https://doi.org/10.1016/j.phrs.2003.11.004