DOI QR코드

DOI QR Code

Characteristics of Cucumber mosaic virus Infecting Zucchini in Korea

  • Kim, Mi-Kyeong (Agricultural Microbiology Division, National Academy of Agricultural Science) ;
  • Kwak, Hae-Ryun (Agricultural Microbiology Division, National Academy of Agricultural Science) ;
  • Jeong, Seon-Gi (Gyeongsangnam-do Agricultural Research and Extension Services) ;
  • Ko, Sug-Ju (Jeonnam Agricultural Research and Extension Services) ;
  • Lee, Su-Heon (Agricultural Microbiology Division, National Academy of Agricultural Science) ;
  • Kim, Jeong-Soo (Agricultural Microbiology Division, National Academy of Agricultural Science) ;
  • Kim, Kook-Hyung (Department of Agricultural Biotechnology and Plant Genomics and Breeding Institute, Seoul National University) ;
  • Choi, Jang-Kyung (Department of Agricultural Biology, Kangwon National University) ;
  • Choi, Hong-Soo (Agricultural Microbiology Division, National Academy of Agricultural Science) ;
  • Cha, Byeong-Jin (Department of Plant Medicine, Chungbuk National University)
  • Received : 2010.01.18
  • Accepted : 2010.05.18
  • Published : 2010.06.30

Abstract

A virus causing stunt, yellowing, severe mosaic, malformation symptoms on leaves and uneven development and malformation on fruits of zucchini was prevalent around Goseong, Gyeongsangnam-do, Korea. A survey conducted (2004) in the Goseong area revealed about 20% virus infection rate. The disease causative identified as Cucumber mosaic virus (CMV-Z1) was further characterized. The isolate induces mosaic symptoms on Cucumis sativus, while severe mosaic, stunt and malformation on C. pepo. Thin section analyses have shown that virus inclusions are formed in the cuticle layers as well as epidermal, parenchyma and collenchymas cells in virus-infected Nicotiana tabacum. CMV-Z1 isolate induced specific cytoplasmic inclusion bodies such as irregular clumps (IC), crystal (Cr) and irregular chloroplasts (ICh). IC was made up of virus particles interspersed with a darkly stained amorphous material and found both in the cytoplasm and vacuoles, whereas ICh and Cr were rarely found in the vacuoles. The genome of CMV-Z1 RNA-1 consists of 3359 nucleotide (nt) encoding 1a protein of 993 amino acids (aa). The CMV-Z1 RNA-2 was 3050 nt in length containing 2a (857 aa) and 2b (110 aa), while RNA-3 encoding 3a movement protein (279 aa) and coat protein (218 aa) was 2215 nt in length. Phylogenetic analyses of nucleotide sequences of CMV-Z1 isolate appeared it is more closely related to subgroup IA than to subgroup IB or II.

Keywords

References

  1. Altschul, S. F. 1998. Generalized affine gap costs for protein sequence alignment. Proteins 32:88-96. https://doi.org/10.1002/(SICI)1097-0134(19980701)32:1<88::AID-PROT10>3.0.CO;2-J
  2. Chaumpluk, P., Sasaki, Y., Nakajima, N. and Nagano, H. 1996. Six new subgroup I members of Japanese cucumber mosaic virus as determined by nucleotide sequence analysis of RNA3’s cDNAs. Ann. Phytopathol. Soc. Jpn. 62:40-44. https://doi.org/10.3186/jjphytopath.62.40
  3. Choi, H. S. and Ryu, J. K. 2001. Cucumber Mosaic Cucumovirus-CARNA5 Causing Bud Necrosis on Table Tomato. Plant Pathol. J. 17:169-173.
  4. Choi, J. K., Kim, H. J., Hong, J. S., Kim, D. W. and Lee, S. Y. 1998. Identification and differentiation of cucumber mosaic virus isolates in Korea. Plant Pathol. J. 14:7-12.
  5. Choi, G. S. 2001. Occurrence of two tobamovirus diseases in cucurbits and control measures in Korea. Plant Pathol. J. 17:243-248.
  6. Choi, S. K., Palukaitis, P., Min, B. E., Lee, M. Y., Choi, J. K. and Ryu, K. H. 2005. Cucumber mosaic virus 2a polymerase and 3a movement proteins independently affect both virus movement and the timing of symptom development in zucchini squash. J. Gen. Virol. 86:1213-1222. https://doi.org/10.1099/vir.0.80744-0
  7. Doolittle, S. P. 1916. A new infectious mosaic disease of cucumber. Phytopathology 6:145-147.
  8. Edwardson, J. R. and Christie, R. G. 1991. Cucumoviruses. 293-319. CRC Handbook of viruses infecting legumes. CRC Press.
  9. Francki, R. I. 1985. Plant virus satellites. Annu. Rev. Microbiol. 39:151-174. https://doi.org/10.1146/annurev.mi.39.100185.001055
  10. Gal-On, A., Kaplan, I. B. and Palukaitis, P. 1996. Characterization of cucumber mosaic virus. II. Identification of movement protein sequences that influence its accumulation and systemic infection in tobacco. Virology 226:354-361. https://doi.org/10.1006/viro.1996.0663
  11. Jagger, I. C. 1916. Experiments with the cucumber mosaic disease. Phytopathology 6:148-151.
  12. Jin, T. S., Lee, S. H., Park, J. W., Choi, H. S., Kim, S. M., Shin, D. B., Cheon, J. U. and Cha, B. J. 2003. Identification of Papaya Ringspot Potyvirus type W infecting squash in Korea. Plant Pathol. J. 19:339.
  13. Kim, M. K. 2007. Comparative analyses of Korean isolates of Cucumber mosaic virus. MS. Thesis, Chungbuk National University, Korea.
  14. Lee, S. H. 1981. Studies on virus disease occurring in various crops in Korea. Res Rept. RDA 23:62-74.
  15. Lee, S. H., Kim, S. M., Kim, W. C. and Lee, K. W. 2003. Multiplex reverse transcription polymerase chain reaction assay for simultaneous detection of five cucurbit-infecting viruses. Plant Pathol. J. 19:342.
  16. Li, H. W., Lucy, A. P., Guo, H. S., Li, W. X., Ji, L. H., Wong, S. M. and Ding, S. W. 1999. Strong host resistance targeted against a viral suppressor of the plant gene silencing defense mechanism. EMBO J. 18:2683-2691. https://doi.org/10.1093/emboj/18.10.2683
  17. Lot, H. and Kaper, J. M. 1976. Further studies on the RNA component distribution among the nucleoproteins of cucumber mosaic cucumovirus. J. Virol. 69:4746-4751.
  18. Mossop, D. W., Francki, R. I. B. and Grivell, C. J. 1976. Comparative studies on tomato aspermy and cucumber mosaic viruses. V. Purification and properties of a cucumber mosaic virus inducing severe chlorosis. Virology 74:544-546. https://doi.org/10.1016/0042-6822(76)90361-5
  19. Palukaitis, P. and Garcia-Arenal, F. 2003. Cucumoviruses: Adv. Virus Res. 62:241-323. https://doi.org/10.1016/S0065-3527(03)62005-1
  20. Palukaitis, P. and Kaplan, J. B. 1997. Synergy of virus accumulation and pathology in transgenic plants expressing viral sequences. In: Virus-Resistant Transgenic Plants. Potential Ecological Impact, ed. by M. Tepfer and E. Bulazs, pp. 77-84. Springer, Berlin.
  21. Rizos, H., Gunn, L. V., Rares, R. D. and Gillings, M. R. 1992. Differentiation of cucumber mosaic virus isolates using the polymerase chain reaction. J. Gen. Virol. 73:2099-2103. https://doi.org/10.1099/0022-1317-73-8-2099
  22. Roossinck, M. J. 2001. Cucumber mosaic virus, a model for RNA virus evolution. Mol. Plant Pathol. 2:59-63. https://doi.org/10.1046/j.1364-3703.2001.00058.x
  23. Roossinck, M. J. 2002. Evolutionary history of Cucumber mosaic virus deduced by phylogenetic analyses. J. Virol. 76:3382-3387. https://doi.org/10.1128/JVI.76.7.3382-3387.2002
  24. Roossinck, M. J. and White, P. S. 1998. Cucumovirus isolation and RNA extraction. Methods Mol. Biol. 81:189-196.
  25. Roossinck, M. J., Bujarski, J. and Ding, S. W. 1999. Family Bromoviridae. 923-935.
  26. Saitou, N. and Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4:406-425.
  27. Shukla, D. D., Ward, C. W. and Brunt, A. A. 1994. The Potyviridae. CAB International, Cambridge, UK.
  28. Suzuki, M., Kuwata, S., Masuta, C. and Takanami, Y. 1991. Point mutation in the coat protein of cucumber mosaic virus affects symptom expression and virion accumulation in tobacco. J. Gen. Virol. 76:1791-1799. https://doi.org/10.1099/0022-1317-76-7-1791
  29. Symons, R. H. 1975. Cucumber mosaic virus RNA contains 7-methyl guanosine at the 5'-terminus of all four RNA species. Mol. Biol. Rep. 2:277-285. https://doi.org/10.1007/BF00357014
  30. Takanami, Y. 1981. A striking change in symptoms on cucumber mosaic virus -infected tobacco plants induced by a satellite RNA. Virology 109:120-136. https://doi.org/10.1016/0042-6822(81)90476-1
  31. Van Regenmortel, M. H. V., Fauquet, C. M., Bishop, D. H. L., Carstens, E. B., Estes, M. K., Lemon, S. M., Maniloff, J., Mayo, M. A., McGeoch, D. J., Pringle, C. R. and Wickner, R. B. 2000. Family Potyviridae. In: Virus Taxonomy, Seventh Report of the International Committee on Taxonomy of Viruses, pp 703-724. Academic Press, San Diego, USA.
  32. Wadsworth, G. J., Redinbaugh, M. G. and Scandalios, J. G. 1988. A procedure for the small-scale isolaion of plants RNA suitable for RNA blot amalysis. Anal. Biochem. 172:279-283. https://doi.org/10.1016/0003-2697(88)90443-5
  33. Wellman, F. L. 1972. Tropical and American Plant Disease. pp. 125-172. The Scarecrow Press, Metuchen, NJ.
  34. Zhang, L., Handa, K. and Palukaitis, P. 1994. Mapping local and systemic symptom determinants of cucumber mosaic cucumovirus in tobacco. J. Gen. Virol. 75:3185-3195. https://doi.org/10.1099/0022-1317-75-11-3185

Cited by

  1. Interaction of the host protein NbDnaJ with Potato virus X minus-strand stem-loop 1 RNA and capsid protein affects viral replication and movement vol.417, pp.1, 2012, https://doi.org/10.1016/j.bbrc.2011.11.137
  2. Characteristics of Cucumber mosaic virus isolated from Zea mays in Korea vol.27, pp.4, 2011, https://doi.org/10.5423/PPJ.2011.27.4.372
  3. First Report of Cucumber mosaic virus Isolated from Wild Vigna angularis var. nipponensis in Korea vol.30, pp.2, 2014, https://doi.org/10.5423/PPJ.NT.01.2013.0012
  4. IDENTIFICATION AND EFFECTS OF MIXED INFECTION OF Potyvirus ISOLATES WITH Cucumber mosaic virus IN CUCURBITS vol.29, pp.4, 2016, https://doi.org/10.1590/1983-21252016v29n429rc
  5. New research horizons in vector-transmission of plant viruses vol.14, pp.4, 2011, https://doi.org/10.1016/j.mib.2011.07.008
  6. 2007-2011 Characteristics of Plant Virus Infections on Crop Samples Submitted from Agricultural Places vol.18, pp.4, 2012, https://doi.org/10.5423/RPD.2012.18.4.277
  7. Virus-induced Silencing of the WRKY1 Transcription Factor that Interacts with the SL1 Structure of Potato virus X Leads to Higher Viral RNA Accumulation and Severe Necrotic Symptoms vol.28, pp.1, 2012, https://doi.org/10.5423/PPJ.OA.11.2011.0226
  8. The red clover necrotic mosaic virus capsid protein N-terminal amino acids possess specific RNA binding activity and are required for stable virion assembly vol.176, pp.1-2, 2013, https://doi.org/10.1016/j.virusres.2013.05.014
  9. Molecular characterization and phylogenetic analysis of Ukrainian isolates of Cucumber mosaic virus based on the partial sequences of three genes vol.34, pp.1, 2018, https://doi.org/10.7124/bc.00096E