Neuroprotective and Anti-inflammatory Effects of Bee Venom Acupuncture on MPTP-induced Mouse

MPTP 유발 파킨슨병 동물 모델에 대한 봉독약침의 신경보호 효과 및 항염증 효과

  • Park, Won (Kiz&Mom Oriental Medicine Clinic) ;
  • Kim, Jae-Kyu (Dep. of Acupuncture and Moxibustion, Pusan National University School of Korean Medicine) ;
  • Kim, Jong-In (Dept. of Acupuncture & Moxibustion, College of Kyung Hee University Oriental Medicine) ;
  • Choi, Do-Young (Dept. of Acupuncture & Moxibustion, College of Kyung Hee University Oriental Medicine) ;
  • Koh, Hyung-Kyun (Dept. of Acupuncture & Moxibustion, College of Kyung Hee University Oriental Medicine)
  • 박원 (키즈앤맘 한의원) ;
  • 김재규 (부산대학교 한의학전문대학원 침구학교실) ;
  • 김종인 (경희대학교 한의과대학 침구학교실) ;
  • 최도영 (경희대학교 한의과대학 침구학교실) ;
  • 고형균 (경희대학교 한의과대학 침구학교실)
  • Received : 2010.05.19
  • Accepted : 2010.05.28
  • Published : 2010.06.20

Abstract

목적 : 이 연구는 MPTP 유발 파킨슨병 동물 모델에서 봉독약침의 신경보호 효과 및 항염증 효과를 확인하기 위해 시행되었다. 방법 : C57BL/6 mice에 신경독소인 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine(MPTP)를 하루에 2시간 간격으로 MPTP-HCl(20mg/kg per dose)을 4번 복강 내 주입하여 중뇌 흑질의 도파민 신경세포를 파괴한 파킨슨병 동물 모델을 유발하였다. 실험군은 MPTP군, MPTP 현종 BVA군, MPTP 곡지 BVA군, MPTP 신수 BVA군의 4군으로 하였다. 마지막 MPTP 투여 2시간 후에 1차로 봉독약침을 시술하고, 그 후 48시간 간격으로 총 5차 연속 시술하였다. 봉독약침액의 농도는 0.2mg/Kg으로 하였고, 경혈은 양측 현종($GB_{39}$), 곡지($LI_{11}$), 신수($BL_{23}$)를 사용했고, 주입량은 각 경혈당 양측으로 각 $20{\mu\ell}$씩 주입하였다. 항염증작용을 알아보기 위해 TH, MAC-1, iNOS HSP70을, 세포사멸에 대한 신경세포의 보호효과를 알아보기 위해 caspase-3을 면역조직화학법을 사용하여 실시하였다. 결과 : 실험 결과 MPTP 유발 파킨슨병 동물 모델에서 현종 곡지 신수혈에 대한 봉독약침은 TH-Immunoreactivity neuron의 감소와 microglial activation을 억제하였다. 봉독약침군 모두 효과를 보였으나 그 중 현종과 신수혈에서 특히 억제작용이 컸다. MAC-1에서는 현종혈이 억제작용이 컸다. HSP70-IR neuron은 곡지에서 유의한 억제작용을 보였으나, iNOS neuron은 모든 군에서 유의한 차이를 보이지 않았다. 또한 세포사멸억제여부 실험에서 봉독약침은 모두 억제작용을 보였으나 특히 곡지자침군에서 caspase-3 발현을 유의하게 억제하였다. 결론 : 이러한 결과는 봉독약침이 MPTP 투여로 인한 중뇌 흑질의 염증에 의한 도파민 신경세포 손상을, 염증을 억제함으로써 항염 효과를 나타냄을 알 수 있으며, 신경세포를 보호하는 활성이 있음을 보여줌과 동시에 세포사멸을 억제하는 활성이 있다고 사료된다.

Keywords

References

  1. Lee JD, Park HJ, Chae Y, Lim S. An Overview of Bee Venom Acupuncture in the Treatment of Arthritis. Evid Based Complement Alternat Med. 2005 ; 2 : 79-84. https://doi.org/10.1093/ecam/neh070
  2. Goldberg A, Confino-Cohen R. Effectiveness of maintenance bee venom immunotherapy administered at 6-month intervals. Ann Allergy Asthma Immunol. 2007 ; 99 : 352-7. https://doi.org/10.1016/S1081-1206(10)60552-2
  3. Castro HJ, Mendez-Lnocencio JI, Omidvar B, Omidvar J, Santilli J, Nielsen HS Jr Pavot AP, Richert JR, Bellanti JA. A phase I study of the safety of honeybee venom extract as a possible treatment for patients with progressive forms of multiple sclerosis. Allergy Asthma Proc. 2005 ; 26 : 470-6.
  4. Mirshafiey A. Venom therapy in multiple sclerosis. Neuropharmacology. 2007 ; 53(3) : 353-61. https://doi.org/10.1016/j.neuropharm.2007.05.002
  5. Shinto L, Calabrese C, Morris C, Sinsheimer S, Bourdette D. Complementary and alternative medicine in multiple sclerosis: survey of licensed naturopaths. J Altern Complement Med. 2004 ; 10 : 891-7.
  6. Wesselius T, Heersema DJ, Mostert JP, Heerings M, Admiraal-Behloul F, Talebian A, Van Buchem MA, De Keyser J. A randomized crossover study of bee sting therapy for multiple sclerosis. Neurology. 2005 ; 65 : 1764-8. https://doi.org/10.1212/01.wnl.0000184442.02551.4b
  7. Eiseman JL, von Bredow J, Alvares AP. Effect of honeybee (Apis mellifera) venom on the course of adjuvant-induced arthritis and depression of drug metabolism in the rat. Biochem Pharmacol. 1982 ; 31(6) : 1139-46. https://doi.org/10.1016/0006-2952(82)90354-9
  8. Kwon YB, Lee HJ, Han HJ, Mar WC, Kang SK, Yoon OB, Beitz AJ, Lee JH. The water-oluble fraction of bee venom produces anti-nociceptive and anti-inflammatory effects on rheumatoid arthritis in rats. Life Sci. 2002 ; 71(2) : 191-204. https://doi.org/10.1016/S0024-3205(02)01617-X
  9. Schmidt JO. Biochemistry of insect venoms. Annu Rev Entomol. 1982 ; 27 : 339-68. https://doi.org/10.1146/annurev.en.27.010182.002011
  10. Lariviere WR, Melzack R. The bee venom test: a new tonic-pain test. Pain. 1996 ; 66(2-3) : 271-7. https://doi.org/10.1016/0304-3959(96)03075-8
  11. Moon DO, Park SY, Lee KJ, Heo MS, Kim KC, Kim MO, Lee JD, Choi YH, Kim GY. Bee venom and melittin reduce proinflammatory mediators in lipopolysaccharide-stimulated BV2 microglia. Int Immunopharmacol. 2007 ; 7(8) : 1092-101. https://doi.org/10.1016/j.intimp.2007.04.005
  12. Han S, Lee K, Yeo J, Kweon H, Woo S, Lee M, Baek H, Kim S, Park K. Effect of honey bee venom on microglial cells nitric oxide and tumor necrosis factor-alpha production stimulated by LPS. J Ethnopharmacol. 2007 ; 111(1) : 176-81. https://doi.org/10.1016/j.jep.2006.11.008
  13. Dauer W, Przedborski S. Parkinson's disease : mechanisms and models. Neuron. 2003 ; 39 : 889-909. https://doi.org/10.1016/S0896-6273(03)00568-3
  14. Dehmer T, Lindenau J, Haid S, Dichgans J, Schulz JB, Deficiency of inducible nitric oxide synthase protects against MPTP toxicity in vivo. J Neurochem. 2000 ; 74 : 2213-6.
  15. Hunot S, Hirsch EC, Neuroinflammatory processes in Parkinson' disease Ann Neurol. 2003 ; 53 : Suppl 3 S49-58 ; discussion S58-60.
  16. Wilms H, Zecca L, Rosenstiel P, Sievers J, Deuschl G, Lucius R. Inflammation in Parkinson's diseases and other neurodegenerative diseases : cause and therapeutic implications. Curr Pharm Des. 2007 ; 13 : 1925-8. https://doi.org/10.2174/138161207780858429
  17. Wu DC, Teismann P, Tieu K, Vila M, Jackson- Lewis V, Ischiropoulos H, Przedborski S. NADPH oxidase mediates oxidative stress in the 1- methyl- 4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson's disease. Proc Natl Acad Sci USA. 2003 ; 100 : 6145-50. https://doi.org/10.1073/pnas.0937239100
  18. Eberhardt O, Schulz JB, Apoptotic mechanisms and antiapoptotic therapy in the MPTP model of Parkinson's disease. Toxicol Lett. 2003 ; 139 : 135-51. https://doi.org/10.1016/S0378-4274(02)00428-9
  19. Teismann P, Schulz JB. Cellular pathology of Parkinson's disease : astrocytes, microglia and inflammation. Cell Tissue Res. 2004 ; 318(1) : 149-61. https://doi.org/10.1007/s00441-004-0944-0
  20. Aloisi F. Immune function of microglia. Glia. 2001 ; 36(2) : 165-79. https://doi.org/10.1002/glia.1106
  21. Nakajima K, Kohsaka S. Microglia: activation and their significance in the central nervous system. J Biochem. 2001 ; 130(2) : 169-75. https://doi.org/10.1093/oxfordjournals.jbchem.a002969
  22. Kohutnicka M, Lewandowska E, Kurkowska- Jastrzebska I, Czlonkowski A, Czlonkowska A. Microglial and astrocytic involvement in a murine model of Parkinson's disease induced by 1-methyl -4-phenyl-1,2,3,6-tetrahydropyridine(MPTP). Immunopharmacology. 1998 ; 39(3) : 167-80. https://doi.org/10.1016/S0162-3109(98)00022-8
  23. McGeer PL, McGeer EG. Glial reactions in Parkinson's disease. Mov Disord. 2008 ; 23 : 474-83. https://doi.org/10.1002/mds.21751
  24. Przedborski S, Vila M. The 1-methyl-4-phenyl- 1,2,3,6-tetrahydropyridine mouse model : a tool to explore the pathogenesis of Parkinson's disease. Ann N Y Acad Sci. 2003 ; 991 : 189-98.
  25. Cassarino DS, Fall CP, Swerdlow RH, Smith TS, Halvorsen EM, Miller SW, Parks JP, Parker WD Jr, Bennett JP Jr. Elevated reactive oxygen species and antioxidant enzyme activities in animal and cellular models of Parkinson's disease. Biochim Biophys Acta. 1997 ; 1362 : 77-86. https://doi.org/10.1016/S0925-4439(97)00070-7
  26. Teismann P, Vila M, Choi DK, Tieu K, Wu DC, Jackson-Lewis V, Przedborski S, COX-2 and neurodegeneration in Parkinson's disease. Ann NY Acad Sci. 2003 ; 991 : 272-7.
  27. Wu C. Heat shock transcription factors: structure and regulation. Annu Rev Cell Dev Biol. 1995 ; 11 : 441-69. https://doi.org/10.1146/annurev.cb.11.110195.002301
  28. Wegele H, Muller L, Buchner J. Hsp70 and Hsp90-a relay team for protein folding. Rev Physiol Biochem Pharmacol. 2004 ; 151 : 1-44. https://doi.org/10.1007/s10254-003-0021-1
  29. Morimoto RI, Santoro MG. Stress-inducible responses and heat shock proteins: new pharmacologic targets for cytoprotection. Nat Biotechno.l 1998 ; 16(9) : 833-8. https://doi.org/10.1038/nbt0998-833
  30. Jackson-Lewis V, Przedborski S. Protocol for the MPTP mouse model of Parkinson's disease. Nat Protoc. 2007 ; 2(1) : 141-51. https://doi.org/10.1038/nprot.2006.342
  31. Burke RE, Cadet JL, Kent JD, Karanas AL, Jackson-Lewis V. An assessment of the validity of densitometric measures of striatal tyrosine hydroxylase-positive fibers : relationship to apomorphine-induced rotations in 6-hydroxydopamine lesioned rats. J Neurosci Methods. 1990 ; 35(1) : 63-73. https://doi.org/10.1016/0165-0270(90)90095-W
  32. Lawson LJ, Perry VH, Dri P, Gordon S. Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain. Neuroscience. 1990 ; 39(1) : 151-70. https://doi.org/10.1016/0306-4522(90)90229-W
  33. Kim WG, Mohney RP, Wilson B, Jeohn GH, Liu B, Hong JS. Regional difference in susceptibility to lipopolysaccharide-induced neurotoxicity in the rat brain: role of microglia. J Neurosci. 2000 ; 20(16) : 6309-16.
  34. Freyaldenhoven TE, Ali SF. Role of heat shock proteins in MPTP-induced neurotoxicity. Ann N Y Acad Sci. 1997 ; 825 : 167-78. https://doi.org/10.1111/j.1749-6632.1997.tb48427.x
  35. Tatton NA, Kish SJ, In situ detection of apoptotic nuclei in the substantia nigra compacta of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridinetreate d mice using terminal deoxynucleotidyl transferase labelling and acridine orange staining. Neuroscience. 1997 ; 77 : 1037-48. https://doi.org/10.1016/S0306-4522(96)00545-3
  36. Eberhardt O, Coelln RV, Kugler S, Lindenau J, Rathke-Hartlieb S, Gerhardt E, Haid S, Isenmann S, Gravel C, Srinivasan A, Bahr M, Weller M, Dichgans J, Schulz JB. Protection by synergistic effects of adenovirus-mediated X- chromosomelinked inhibitor of apoptosis and glial cell linederived neurotrophic factor gene transfer in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson's disease. J Neurosci. 2000 ; 20 : 9126-34.
  37. Hartmann A, Hunot S, Michel PP, Muriel MP, Vyas S, Faucheux BA, Mouatt-Prigent A, Turmel H, Srinivasan A, Ruberg M, Evan GI, Agid Y, Hirsch EC. Caspase-3 : A vulnerability factor and final effector in apoptotic death of dopaminergic neurons in Parkinson's disease. Proc Natl Acad Sci USA. 2000 ; 97 : 2875-80. https://doi.org/10.1073/pnas.040556597
  38. Lang AE, Lozano AM. Parkinson's disease. First of two parts. N Engl J Med. 1998 ; 339(15) : 1044-53. https://doi.org/10.1056/NEJM199810083391506
  39. Deumens R, Blokland A, Prickaerts J. Modeling Parkinson's disease in rats : an evaluation of 6-OHDA lesions of the nigrostriatal pathway. Exp Neurol. 2002 ; 175(2) : 303-17. https://doi.org/10.1006/exnr.2002.7891
  40. Schapira AH. Evidence for mitochondrial dysfunction in Parkinson's disease-a critical appraisal. Mov Disord. 1994 ; 9(2) : 125-38.
  41. Ben-Shachar D, Zuk R, Glinka Y. Dopamine neurotoxicity : inhibition of mitochondrial respiration. J Neurochem. 1995 ; 64(2) : 718-23.
  42. Hoehn MM, Yahr MD. Parkinsonism : onset, progression, and mortality. Neurology. 1998 ; 50(2) : 318-34. https://doi.org/10.1212/WNL.50.2.318
  43. Rosenberg RN. Mitochondrial therapy for Parkinson disease. Arch Neurol. 2002 ; 59(10) : 1523. https://doi.org/10.1001/archneur.59.10.1523
  44. Mc Geer PL, Yasojima K, Mc Geer EG. Inflammation in Parkinson's disease. Adv Neurol. 2001 ; 86 : 83-9.
  45. Kim SU, de Vellis J. Microglia in health and disease. J Neurosci Res. 2005 ; 81(3) : 302-13. https://doi.org/10.1002/jnr.20562
  46. Beyer M, Gimsa U, Eyupoglu IY, Hailer NP, Nitsch R. Phagocytosis of neuronal or glial debris by microglial cells: upregulation of MHC class II expression and multinuclear giant cell formation in vitro. Glia. 2000 ; 31(3) : 262-6. https://doi.org/10.1002/1098-1136(200009)31:3<262::AID-GLIA70>3.0.CO;2-2
  47. Langston JW, Forno LS, Tetrud J, Reeves AG, Kaplan JA, Karluk D. Evidence of active nerve cell degeneration in the substantia nigra of humans years after 1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine exposure. Ann Neurol. 1999 : 46(4) : 598-605. https://doi.org/10.1002/1531-8249(199910)46:4<598::AID-ANA7>3.0.CO;2-F
  48. Kang JM, Park HJ, Choi YG, Choe IH, Park JH, Kim YS, Lim S. Acupuncture inhibits microglial activation and inflammatory events in the MPTPinduced mouse model. Brain Res. 2007 ; 1131(1) : 211-9.
  49. Tissieres A, Mitchell HK, Tracy UM. Proteinsyn the sis in salivary glands of Drosophila melanogaster: relation to chromosome puffs. J Mol Biol. 1974 ; 84(3) : 389-98. https://doi.org/10.1016/0022-2836(74)90447-1
  50. Takumida M, Anniko M. Heat shock protein 70 delays gentamicin-induced vestibular hair cell death. Acta Otolaryngol. 2005 ; 125(1) : 23-8.
  51. Kobayashi K. Induction of heat-shock protein(hsp) by moxibustion. Am J Chin Med. 1995 ; 23(3-4) :327-30.
  52. Sun N, Shi J, Chen L, Liu X, Guan X. Influence of electroacupuncture on the mRNA of heat shock protein 70 and 90 in brain after cerebral ischemia/ reperfusion of rats. J Huazhong Univ Sci Technolog Med Sci. 2003 : 23(2) : 112-5. https://doi.org/10.1007/BF02859930
  53. Boyd JD, Jang H, Shepherd KR, Faherty C, Slack S, Jiao Y, Smeyne RJ. Response to 1-methyl-4- phenyl-1,2,3,6-tetrahydropyridine (MPTP) differs in mouse strains and reveals a divergence in JNK signaling and COX-2 induction prior to loss of neurons in the substantia nigra pars compacta. Brain Res. 2007 ; 1175 : 107-116. https://doi.org/10.1016/j.brainres.2007.07.067
  54. Asanuma M, MiyazakiI,OgawaN.Dopamine-orLDOPA- induced neurotoxicity : the role of dopamine quinone formationand tyrosinase in a model of Parkinson's disease. Neurotox Res 2003 ; 5(3) : 165-76. https://doi.org/10.1007/BF03033137
  55. Haavik J, Toska K. Tyrosine hydroxylase and Parkinson's disease. Mol Neurobiol. 1998 : 16(3) : 285-309. https://doi.org/10.1007/BF02741387
  56. Hurley FM, Costello DJ, Sullivan AM. Neuroprotective effects of delayed administration of growth/ differentiation factor-5 in the partial lesion model of Parkinson's disease. Exp Neurol. 2004 ; 185(2) : 281-9. https://doi.org/10.1016/j.expneurol.2003.10.003
  57. Oiwa Y, Yoshimura R, Nakai K, Itakura T. Dopaminergic neuroprotection and regeneration by neurturin assessed by using behavioral, biochemical and histochemical measurements in a model of progressive Parkinson's disease. Brain Res. 2002 ; 947(2) : 271-83. https://doi.org/10.1016/S0006-8993(02)02934-7
  58. Park HJ, Lim S, Joo WS, Yin CS, Lee HS, Lee HJ, Seo JC, Leem K, Son YS, Kim YJ, Kim CJ, Kim YS, Chung JH. Acupuncture prevents 6- hydroxydopamine-induced neuronal death in the nigrostriatal dopaminergic system in the rat Parkinson's disease model. Exp Neurol. 2003 ; 180(1) : 93-8. https://doi.org/10.1016/S0014-4886(02)00031-6