DOI QR코드

DOI QR Code

Clematis chinensis suppresses lipopolysaccharide-induced expressions of inducible nitric oxide synthase and cyclooxygenase-2 in mouse BV2 microglial cells

  • Chun, Hae-Jin (Department of Physiology, College of Oriental Medicine, Kyung Won University) ;
  • Lee, Choong-Yeol (Department of Physiology, College of Oriental Medicine, Kyung Won University) ;
  • Lee, Jin-Woo (Department of Physiology, College of Medicine, Kyung Hee University) ;
  • Sung, Yun-Hee (Department of Physiology, College of Medicine, Kyung Hee University) ;
  • Kim, Sung-Eun (Department of Physiology, College of Medicine, Kyung Hee University) ;
  • Kim, Young-Sick (Department of Physiology, College of Medicine, Kyung Hee University) ;
  • Shin, Mal-Soon (Department of Physiology, College of Medicine, Kyung Hee University) ;
  • Kim, Chang-Ju (Department of Physiology, College of Medicine, Kyung Hee University) ;
  • Lee, Hye-Jung (Acupuncture and Meridian Science Research Center, Kyung Hee University) ;
  • Kim, Dong-Hee (Department of Ophthalmology, College of Medicine, Chungju Hospital, Konkuk University)
  • 투고 : 2010.08.24
  • 심사 : 2010.09.07
  • 발행 : 2010.09.30

초록

Clematis chinensis is the root of Clematis chinensis OSBECK and is classified in Ranunculaceae. Clematis chinensis is a traditional medicinal herb possesses analgesic, diuretic, anti-tumorigenic, and anti-inflammatory effects. In this study, the effect of aqueous extract of Clematis chinensis against lipopolysaccharide-induced inflammation was investigated in mouse BV2 microglial cells. The aqueous extract of Clematis chinensis at the respective concentration was treated one hour before the lipopolysaccharide treatment in mouse BV2 microglial cells. From the present results, pre-treatment with the aqueous extract of Clematis chinensis suppressed prostaglandin E2 synthesis and nitric oxide production by inhibiting on the lipopolysaccharide-stimulated cyclooxygenase-2 and inducible nitric oxide synthase expressions in mouse BV2 microglial cells. The present study suggests that Clematis chinensis may offer a valuable mean of therapy for brain inflammatory diseases.

키워드

참고문헌

  1. Amin AR, Vyas P, Attur M, Leszczynska-Piziak J, Patel IR, Weissmann G, Abramson SB. (1995) The mode of action of aspirin-like drugs: effect on inducible nitric oxide synthase. Proc. Natl. Acad. Sci. USA 92, 7926-7930. https://doi.org/10.1073/pnas.92.17.7926
  2. Crofford LJ, Lipsky PE, Brooks P, Abramson SB, Simon LS, van de Putte LB. (2000) Basic biology and clinical application of specific cyclooxygenase-2 inhibitors. Arthritis Rheum. 43, 4-13. https://doi.org/10.1002/1529-0131(200001)43:1<4::AID-ANR2>3.0.CO;2-V
  3. Duan H, Zhang Y, Xu J, Qiao J, Suo Z, Hu G, Mu X. (2006) Effect of anemonin on NO, ET-1 and ICAM-1 production in rat intestinal microvascular endothelial cells. J. Ethnopharmacol. 104, 362-366. https://doi.org/10.1016/j.jep.2005.09.034
  4. Duval DL, Miller DR, Collier J, Billings RE. (1996) Characterization of hepatic NO synthase: identification as the cytokine-inducible form primarily regulated by oxidants. Mol. Pharmacol. 50, 277-284.
  5. Fu JY, Masferrer JL, Seibert K, Raz A, Needlemann P. (1990) The induction and suppression of prostaglandin $H_2$ synthase (cyclooxygenase) in human monocytes. J. Biol. Chem. 265, 16737-16740.
  6. Gidday JM, Park TS, Shah AR, Gonzales ER. (1998) Modulation of basal and post-ischemic leukocyteendothelial adherence by NO. Stroke 29, 1423-1429. https://doi.org/10.1161/01.STR.29.7.1423
  7. Hibbs JB, Taintor RR, Vavrin Z. (1987) Macrophage cytotoxicity: role of L-arginine deiminase and iminonitrogen oxidation to nitrite. Science 235, 473-476. https://doi.org/10.1126/science.2432665
  8. Hinz B, Brune K, Pahl A. (2000) Prostaglandin $E_2$upregulates cyclooxygenase-2 expression in lipopolysaccharide-stimulated RAW 264.7 macrophages. Biochem. Biophys. Res. Commun. 272, 744-748. https://doi.org/10.1006/bbrc.2000.2859
  9. Lee TH, Huang NK, Lai TC, Yang AT, Wang GJ. (2008) Anemonin, from Clematis crassifolia, potent and selective inducible nitric oxide synthase inhibitor. J. Ethnopharmacol. 116, 518-527. https://doi.org/10.1016/j.jep.2007.12.019
  10. Lowenstein CJ, Hill SL, Lafond-Walker A, Wu J, Allen G, Landaver M, Rose NR, Herskowitz A. (1996) NO inhibits viral replication in murine myocarditis. J. Clin. Invest. 97, 1837-1843. https://doi.org/10.1172/JCI118613
  11. Marletta MA. (1993) NO synthase structure and mechanism. J. Biol. Chem. 268, 12231-12234.
  12. Moncada S, Palmer RM, Higgs EA. (1991) Nitric oxide: physiology, pathophysioloogy and pharmacology. Pharmacol. Rev. 43, 109-142.
  13. Morrison DC, Ryan JL. (1987) Endotoxins and disease mechanisms. Annu. Rev. Med. 38, 417-432. https://doi.org/10.1146/annurev.me.38.020187.002221
  14. Nathan C. (1992) NO as a secretory product of mammalian cells. FASEB J. 6, 3051-3064. https://doi.org/10.1096/fasebj.6.12.1381691
  15. Nathan C, Xie QW. (1994) Nitric oxide synthase: Roles, tolls, and controls. Cell 78, 915-918. https://doi.org/10.1016/0092-8674(94)90266-6
  16. Palmer RM, Ashton DS, Moncada S. (1988) Vascular endothelial cells synthesize NO from L-arginine. Nature 333, 664-666. https://doi.org/10.1038/333664a0
  17. Pang L, Hoult JR. (1997) Cytotoxicity to macrophages of tetrandrine, an antisilicosis alkaloid, accompanied by an overproduction of prostaglandins. Biochem. Pharmacol. 53, 773-782. https://doi.org/10.1016/S0006-2952(96)00817-9
  18. Park EK, Ryu MH, Kim YH, Lee YA, Lee SH, Woo DH, Hong SJ, Han JS, Yoo MC, Yang HI, Kim KS. (2006) Anti-inflammatory effects of an ethanolic extract from Clematis mandshurica Rupr. J. Ethnopharmacol. 108, 142-147. https://doi.org/10.1016/j.jep.2006.04.025
  19. Park EK, Shin YW, Lee HU, Kim SS, Lee YC, Lee BY, Kim DH. (2005) Inhibitory effect of ginsenoside Rb1 and compound K on NO and prostaglandin $E_2$ biosyntheses of RAW264.7 cells induced by lipopolysaccharide. Biol. Pharm. Bull. 28, 652-656. https://doi.org/10.1248/bpb.28.652
  20. Picot D, Loll PJ, Garavito RM. (1994) The X-ray crystal structure of the membrane protein prostaglandin $H_2$ synthase-1. Nature 367, 243-249. https://doi.org/10.1038/367243a0
  21. Salvemini D, Misko TP, Masferrer JL, Seibert K, Currie MG, Needleman P. (1993) Nitric oxide activates cyclooxygenase enzymes. Proc. Natl. Acad. Sci. USA 90, 7240-7244. https://doi.org/10.1073/pnas.90.15.7240
  22. Schmidt HH, Walter U. (1994) NO at work. Cell 78, 919-925. https://doi.org/10.1016/0092-8674(94)90267-4
  23. Seybold VS, Jia YP, Abrahams LG. (2003) Cyclooxygenase-2 contributes to central sensitization in rats with peripheral inflammation. Pain. 105, 47-55. https://doi.org/10.1016/S0304-3959(03)00254-9
  24. Simon LS. (1999) Role and regulation of cyclooxygenase-2 during inflammation. Am. J. Med. 106, 37S-42S. https://doi.org/10.1016/S0002-9343(99)00115-1
  25. Stoclet JC, Muller B, Andriantsitohaina R, Kleschyor A. (1998) Overexpression of NO in pathophysiology of blood vessels. Biochemistry 63, 826-832.
  26. Suh N, Honda T, Finlay HJ, Barchowsky A, Williams C, Benoit NE, Xie QW, Nathan C, Gribble GW, Sporn MB. (1998) Novel triterpenoids suppress inducible nitric oxide synthase (iNOS) and inducible cyclooxygenase (COX-2) in mouse macrophages. Cancer Res. 58, 717-723.
  27. Vane JR, Botting RM. (1998) Mechanism of action of nonsteroidal anti-inflammatory drugs. Am. J. Med. 104, 2-S8.
  28. Vane JR, Bakhle YS, Botting RM. (1998) Cyclooxygenases 1 and 2. Annu. Rev. Pharmacol. Toxicol. 38, 97-120. https://doi.org/10.1146/annurev.pharmtox.38.1.97
  29. Yesilada E, Kupeli E. (2007) Clematis vitalba L. aerial part exhibits potent anti-inflammatory, antinociceptive and antipyretic effects. J. Ethnopharmacol. 110, 504-515. https://doi.org/10.1016/j.jep.2006.10.016