Approximately Quadratic Derivations and Generalized Homomorphisms

Kyoo-Hong Parka and Yong-Soo Jungb,*

Abstract. Let A be a unital Banach algebra. If $f : A \rightarrow A$ is an approximately quadratic derivation in the sense of Hyers-Ulam-J.M. Rassias, then $f : A \rightarrow A$ is an exactly quadratic derivation. On the other hands, let A and B be Banach algebras. Any approximately generalized homomorphism $f : A \rightarrow B$ corresponding to Cauchy, Jensen functional equation can be estimated by a generalized homomorphism.

1. Introduction

In 1940, S. M. Ulam26 proposed the following question concerning the stability of group homomorphisms:

Let G_1 be a group and let G_2 be a metric group with the metric $d(\cdot, \cdot)$. Given $\epsilon > 0$, does there exist a $\delta > 0$ such that if a function $h : G_1 \rightarrow G_2$ satisfies the inequality $d(h(xy), h(x)h(y)) < \delta$ for all $x, y \in G_1$, then there exists a homomorphism $H : G_1 \rightarrow G_2$ with $d(h(x), H(x)) < \epsilon$ for all $x \in G_1$?

In next year, D.H. Hyers10 answers the problem of Ulam under the assumption that the groups are Banach spaces: if $\epsilon > 0$ and $f : \mathcal{X} \rightarrow \mathcal{Y}$ is a mapping with \mathcal{X} a normed space, \mathcal{Y} a Banach space such that

$$||f(x + y) - f(x) - f(y)|| \leq \epsilon$$

for all $x, y \in \mathcal{X}$, then there exists a unique additive mapping $T : \mathcal{X} \rightarrow \mathcal{Y}$ such that

$$||f(x) - T(x)|| \leq \epsilon$$

for all $x \in \mathcal{X}$.

Received by the editors March 25, 2009. Revised January 30, 2010. Accepted May 7, 2010.

2000 Mathematics Subject Classification. 39B52, 46H99, 39B72, 39B82.

Key words and phrases. quadratic derivation, approximate quadratic derivation, stability.

*This work was supported by the Korea Research Foundation Grant funded by the Korean Government(KRF-2008-313-C00045).

*Corresponding author.
A generalized version of the theorem of Hyers for approximately linear mappings was given by Th.M. Rassias [21] by introducing the unbounded Cauchy difference. Since then, the stability problems of several functional equation have been extensively investigated by a number of authors (for instance, [1, 3, 6, 23]).

On the other hand, J.M. Rassias [19] generalized the Hyers’ stability result by presenting a weaker condition controlled by (or involving) a product of different powers of norms (from the right-hand side of assumed conditions). That is, assume that there exist constants \(\varepsilon \geq 0 \) and \(p_1, p_2 \in \mathbb{R} \) such that \(p = p_1 + p_2 \neq 1 \), and \(f : X \to Y \) is a mapping with \(X \) a normed space, \(Y \) a Banach space such that the inequality

\[
\|f(x + y) - f(x) - f(y)\| \leq \varepsilon \|x\|^{p_1} \|y\|^{p_2}
\]

for all \(x, y \in X \), then there exist a unique additive mapping \(T : X \to Y \) such that

\[
\|f(x) - T(x)\| \leq \frac{\varepsilon}{2 - 2p} \|x\|^p
\]

for all \(x \in X \). If, in addition, \(f(tx) \) is continuous in \(t \in \mathbb{R} \) for each fixed \(x \) in \(X \), then \(T \) is linear.

A counter-example for a singular case of this result was given by P. Găvrută [7].

Particularly, one of the important functional equations studied is the following functional equation:

\[
f(x + y) + f(x - y) = 2f(x) + 2f(y).
\]

The quadratic function \(f(x) = ax^2 \) is a solution of this functional equation, and so one usually is said the above functional equation to be quadratic [1, 13, 20].

The Hyers-Ulam stability problem of the quadratic functional equation was first proved by F. Skof [25] for functions between a normed space and a Banach space. Afterwards, her result was extended by P.W. Cholewa [4] and S. Czerwik [5]:

If \(p \neq 2 \) and \(f : \mathcal{X} \to \mathcal{Y} \) is a mapping with \(\mathcal{X} \) a normed space, \(\mathcal{Y} \) a Banach space such that

\[
\|f(x + y) + f(x - y) - 2f(x) - 2f(y)\| \leq \varepsilon(\|x\|^p + \|y\|^p)
\]

for all \(x, y \in \mathcal{A} \), then there exists a unique quadratic mapping \(Q : \mathcal{X} \to \mathcal{Y} \) such that

\[
\|f(x) - Q(x)\| \leq c + k\varepsilon\|x\|^p
\]

for all \(x \in \mathcal{X} \) if \(p \geq 0 \) and for all \(x \in \mathcal{X} \setminus \{0\} \) if \(p < 0 \), where: when \(p < 2 \), \(c = \frac{\|f(0)\|}{3} \), \(k = \frac{2}{4 - 2p} \) and when \(p > 2 \), \(c = 0 \), \(k = \frac{2}{2p - 4} \).
Let A be an algebra over the real or complex field F. An additive mapping $d : A \to A$ is said to be a *ring derivation* if the functional equation $d(xy) = xd(y) + d(x)y$ holds for all $x, y \in A$.

T. Miura *et al.* [18] investigated the stability of ring derivations on Banach algebras:

*Suppose that A is a Banach algebra, $p \geq 0$ and $\varepsilon \geq 0$. If $p \neq 1$ and $f : A \to A$ is a mapping such that

$$
\|f(x + y) - f(x) - f(y)\| \leq \varepsilon(\|x\|^p + \|y\|^p)
$$

for all $x, y \in A$ and

$$
\|f(xy) - xf(y) - f(x)y\| \leq \varepsilon\|x\|^p\|y\|^p
$$

for all $x, y \in A$, then there exists a unique ring derivation $d : A \to A$ such that

$$
\|f(x) - d(x)\| \leq \frac{2\varepsilon}{|2 - 2^p|} \|x\|^p
$$

for all $x \in A$. In particular, if A is a Banach algebra without order, then f is an ring derivation.*

Several results for the stability of derivations have been obtained by many authors (for instances, [2, 16, 17, 24]).

We here introduce the following mapping:

A quadratic mapping $D : A \to A$ is said to be a *quadratic derivation* if the functional equation $D(xy) = x^2D(y) + D(x)y^2$ holds for all $x, y \in A$. As a simple example, let us consider the algebra of 2×2 matrices

$$
A = \left\{ \begin{bmatrix} a & b \\ 0 & 0 \end{bmatrix} : \ a, b \in \mathbb{C} \right\},
$$

where \mathbb{C} is a complex field. Then it is easy to see that the mapping $D : A \to A$ defined by

$$
D\left(\begin{bmatrix} a & b \\ 0 & 0 \end{bmatrix} \right) = \begin{bmatrix} 0 & a^2 \\ 0 & 0 \end{bmatrix}
$$

is a quadratic derivation. Here it is natural to ask that there exists an approximately quadratic derivation which is not an exactly quadratic derivation. The following example is a slight modification of an example due to [18].

Example. Let X be a compact Hausdorff space and let $C(X)$ be the commutative Banach algebra of real-valued continuous functions on X under pointwise operations
and the supremum norm $\| \cdot \|_\infty$. We define $f : C(X) \to C(X)$ by

$$f(a)(x) = \begin{cases} a(x)^2 \log |a(x)| & \text{if } a(x) \neq 0, \\ 0 & \text{if } a(x) = 0 \end{cases}$$

for all $a \in C(X)$ and $x \in X$. It is easy to see that

$$f(ab) = a^2 f(b) + f(a)b^2$$

for all $a, b \in C(X)$.

Note that the following inequality holds for all $u, v \in \mathbb{R} \setminus \{0\}$ with $u + v \neq 0$, where \mathbb{R} is a real field,

$$|(u + v)^2 \log |u + v| + (u - v)^2 \log |u - v| - 2u^2 \log |u| - 2v^2 \log |v|| \leq 4|u| |v|$$

In fact, fix $u, v \in \mathbb{R} \setminus \{0\}$, $u + v \neq 0$ arbitrarily. Since $\log(1 + x) \leq x$ for all $x \geq 0$,

$$\begin{align*}
|(u + v)^2 \log |u + v| + (u - v)^2 \log |u - v| - 2u^2 \log |u| - 2v^2 \log |v| & \leq |(u + v)^2 \log(|u| + |v|) + (u - v)^2 \log(|u| - |v|) - 2u^2 \log |u| - 2v^2 \log |v|| \\
& = |2(u^2 + v^2) \log(|u| + |v|) - 2u^2 \log |u| - 2v^2 \log |v|| \\
& \leq 2|u|^2 \log \frac{|u| + |v|}{|u|} + 2|v|^2 \log \frac{|u| + |v|}{|v|} \\
& \leq 2|u|^2 \log \left(1 + \frac{|v|}{|u|}\right) + 2|v|^2 \log \left(1 + \frac{|u|}{|v|}\right) \\
& \leq 2|u|^2 \frac{|v|}{|u|} + 2|v|^2 \frac{|u|}{|v|} = 4|uv|
\end{align*}$$

which gives

$$\|f(a + b) + f(a - b) - 2f(a) - 2f(b)\|_\infty \leq 4\|ab\|_\infty$$

for all $a, b \in C(X)$. Hence we may regard f as an approximately quadratic derivation on $C(X)$.

Let A and B be Banach algebras and let $h : A \to B$ be a linear mapping. Define the bilinear mapping H by $H(x, y) = h(xy) - h(x)h(y)$ for all $x, y \in A$. We say that h is a generalized homomorphism if H is continuous in $x \in A$ for each fixed $y \in A$ and in $y \in A$ for each fixed $x \in A$, respectively. The mapping was introduced by B.E. Johnson [12].

By an approximately generalized homomorphism corresponding to a functional equation $\mathcal{E}(f) = 0$, we mean a mapping $f : A \to B$ such that

$$\|\mathcal{E}(f)\| \leq \varepsilon$$
and the mapping $F : \mathcal{A} \times \mathcal{A} \rightarrow \mathcal{B}$ defined by
\begin{equation}
F(x, y) = f(xy) - f(x)f(y)
\end{equation}
for all $x, y \in \mathcal{A}$, is continuous in $x \in \mathcal{A}$ for each fixed $y \in \mathcal{A}$ and in $y \in \mathcal{A}$ for each fixed $x \in \mathcal{A}$, respectively.

In Section 2, we prove the stability in the sense of Hyers-Ulam-J.M. Rassias and the superstability of quadratic derivations on Banach algebras as in the case of ring derivations. In Section 3 and 4, the stability of generalized homomorphisms on Banach algebras via Cauchy, Jensen equations is established, respectively.

2. Stability of Quadratic Derivations

In this section, \mathbb{Q} and \mathbb{N} will denote the set of the rational and the natural numbers, respectively.

Lemma 2.1. Suppose that \mathcal{A} is a Banach algebra. Let $\delta, \varepsilon \geq 0$ and let $p, q \geq 0$ with either $p < 1$, $q < 2$ or $p > 1$, $q > 2$. If $f : \mathcal{A} \rightarrow \mathcal{A}$ is a mapping such that
\begin{equation}
\|f(x + y) + f(x - y) - 2f(x) - 2f(y)\| \leq \delta \|x\|^p \|y\|^p
\end{equation}
for all $x, y \in \mathcal{A}$ and
\begin{equation}
\|f(xy) - x^2 f(y) - f(x)y^2\| \leq \varepsilon \|x\|^q \|y\|^q
\end{equation}
for all $x, y \in \mathcal{A}$, then there exists a unique quadratic derivation $D : \mathcal{A} \rightarrow \mathcal{A}$ such that
\begin{equation}
\|f(x) - D(x)\| \leq k\delta \|x\|^{2p}
\end{equation}
for all $x \in \mathcal{A}$, where $k = \frac{1}{4} - \frac{1}{4p}$ if $p < 1$ and $k = \frac{1}{4} - \frac{1}{4q}$ if $p > 1$.

Proof. Assume that either $p < 1$, $q < 2$ or $p > 1$, $q > 2$. Set $\tau = 1$ if $p < 1$, $q < 2$ and $\tau = -1$ if $p > 1$, $q > 2$. In (2), put $x = y = 0$ to see that $f(0) = 0$. Hence, following Czerwik’s process [5] using the direct method, we obtain from (2)
\begin{equation}
\|4^{-n}f(2^n x) - f(x)\| \leq \varepsilon \|x\|^{2p} \sum_{k=1}^{n} 2^{2(k-1)p} 4^{-k}
\end{equation}
for all $x \in \mathcal{A}$ and all $n \in \mathbb{N}$ if $p < 1$, and
\begin{equation}
\|f(x) - 4^n f(2^{-n} x)\| \leq \left(\frac{\varepsilon}{4}\right) \|x\|^{2p} \sum_{k=1}^{n} 2^{-2k(p-1)}
\end{equation}
for all \(x \in \mathcal{A} \) and all \(n \in \mathbb{N} \) if \(p > 1 \). Using these inequalities and Czerwik’s process, we see that there exists a unique quadratic mapping \(D : \mathcal{A} \to \mathcal{A} \) defined by
\[
D(x) = \lim_{n \to \infty} 4^{-\tau n} f(2^{\tau n} x)
\]
for all \(x \in \mathcal{A} \) such that
\[
\| f(x) - D(x) \| \leq k\delta \| x \|^{2p}
\]
for all \(x \in \mathcal{A} \), where \(k = \frac{1}{4^p - 4} \) if \(p < 1 \) and \(k = \frac{1}{4^p - 4} \) if \(p > 1 \).

We claim that
\[
D(xy) = x^2 D(y) + D(x) y^2
\]
for all \(x, y \in \mathcal{A} \). Since \(D \) is quadratic, we see that \(D(x) = 4^{-\tau n} D(2^{\tau n} x) \) for all \(x \in \mathcal{A} \) and all \(n \in \mathbb{N} \). First, it follows from (4) that
\[
\| 4^{-\tau n} f(2^{\tau n} x) - D(x) \| = 4^{-\tau n} \| f(2^{\tau n} x) - D(2^{\tau n} x) \|
\]
\[
\leq 4^{-\tau n} k\delta \| 2^{\tau n} x \|^{2p}
\]
\[
= 4^{(p-1)n} k\delta \| x \|^{2p}
\]
for all \(x \in \mathcal{A} \) and all \(n \in \mathbb{N} \). Since \(\tau(p - 1) < 0 \), we have
\[
(5) \quad \| 4^{-\tau n} f(2^{\tau n} x) - D(x) \| \to 0 \quad \text{as} \quad n \to \infty.
\]

Following the similar argument as the above, we obtain
\[
\| 4^{-2\tau n} f(2^{2\tau n} xy) - D(xy) \| \leq 4^{\tau(p-1)n} k\delta \| xy \|^{2p}
\]
for all \(x, y \in \mathcal{A} \) and all \(n \in \mathbb{N} \), and so
\[
(6) \quad \| 4^{-2\tau n} f(2^{2\tau n} xy) - D(xy) \| \to 0 \quad \text{as} \quad n \to \infty.
\]

Since \(f \) satisfies (3), we get
\[
\| 4^{-2\tau n} f(2^{2\tau n} xy) - 4^{-\tau n} x^2 f(2^{\tau n} y) - f(2^{\tau n} x) 4^{-\tau n} y^2 \|
\]
\[
= 4^{-2\tau n} \| f((2^{\tau n} x)(2^{\tau n} y)) - (2^{\tau n} x)^2 f(2^{\tau n} y) - f(2^{\tau n} x)(2^{\tau n} y)^2 \|
\]
\[
\leq 4^{-2\tau n} \varepsilon \| 2^{\tau n} x \|^q \| 2^{\tau n} y \|^q = 2^{\tau n(q-2)} \varepsilon \| x \|^q \| y \|^q
\]
for all \(x, y \in \mathcal{A} \) and all \(n \in \mathbb{N} \). Invoking \(\tau(q - 2) < 0 \), we obtain
\[
(7) \quad \| 4^{-2\tau n} f(2^{2\tau n} xy) - 4^{-\tau n} x^2 f(2^{\tau n} y) - f(2^{\tau n} x) 4^{-\tau n} y^2 \| \to 0 \quad \text{as} \quad n \to \infty.
\]

Using (5), (6) and (7), we now see that
\[
\| D(xy) - x^2 D(y) - D(x) y^2 \|
\]
\[
\leq \| D(xy) - 4^{-2\tau n} f(2^{2\tau n} xy) \|.
\]
+ \|4^{-2}r_n f(2^{2}r_n x^2 f(2^{2}r_n y) - 4^{-2}r_n f(2^{2}r_n x^2 (2^{2}r_n y)^2\| \\
+ \|4^{-2}r_n x^2 f(2^{2}r_n y) - x^2 D(y)\| + \|4^{-2}r_n f(2^{2}r_n x^2 y^2 - D(x)y^2\| \\
\leq \|D(xy) - 4^{-2}r_n f(2^{2}r_n xy)\| \\
+ \|4^{-2}r_n f(2^{2}r_n xy) - 4^{-2}r_n f(2^{2}r_n xy - 4^{-2}r_n f(2^{2}r_n xy)^2\| \\
+ \|x^2\|4^{-2}r_n f(2^{2}r_n y) - D(y)\| + \|f(2^{2}r_n x)4^{-2}r_n - D(x)\|y^2\| \to 0 \text{ as } n \to \infty \\
which implies that } D(xy) = x^2 D(y) + D(x)y^2 \text{ for all } x \in A. \text{ Namely, } D \text{ is a quadratic derivation, as claimed and the proof is complete.} \]

Lemma 2.2. Suppose that \(\mathcal{A} \) is a unital Banach algebra. Let \(\delta, \varepsilon \geq 0 \) and let \(p, q \geq 0 \) with either \(p < 1, q < 2 \) or \(p > 1, q > 2 \). If \(f : \mathcal{A} \to \mathcal{A} \) is a mapping satisfying (2) and (3), then we have we have

\[
f(rx) = r^2f(x)
\]

for all \(x \in \mathcal{A} \) and all \(r \in \mathbb{Q} \).

Proof. In the case when \(r = 0 \), it is trivial since \(f(0) = 0 \). Let \(e \) be a unit element of \(\mathcal{A} \) and \(r \in \mathbb{Q} \setminus \{0\} \) arbitrarily. Put \(\tau = 1 \) if \(p < 1, q < 2 \) and \(\tau = -1 \) if \(p > 1, q > 2 \). Hence it follows that \(\tau(p - 1) < 0 \) and \(\tau(q - 2) < 0 \). By Lemma 2.1, there exists a unique quadratic derivation \(D : \mathcal{A} \to \mathcal{A} \) such that (4) is true. Recall that \(D \) is quadratic, and hence it is easy to see that \(D(rx) = r^2D(x) \) for all \(x \in \mathcal{A} \). Then we get

\[
\|D((2^{2}r_n e)(rx)) - r^22^{2}r_n e f(x) - f(2^{2}r_n e)r^2 x^2\| \\
\leq r^2\|D(2^{2}r_n e x) - f(2^{2}r_n e x)\| + r^2\|f(2^{2}r_n e x) - 4^{2}r_n e f(x) - f(2^{2}r_n e x^2\| \\
\text{for all } x \in \mathcal{A} \text{ and all } n \in \mathbb{N}. \text{ Now the inequalities (3), (4) and (8) yields that}
\]

\[
\|D((2^{2}r_n e)(rx)) - r^22^{2}r_n e f(x) - f(2^{2}r_n e)r^2 x^2\| \\
\leq r^22^{2}r_n e \|x\|^{2p} + r^22^{2}r_n e \|x\|^{q}
\]

for all \(x \in \mathcal{A} \) and all \(n \in \mathbb{N}. \)

It follows from (4) and (9) that

\[
\|f((2^{2}r_n e)(rx)) - r^22^{2}r_n e f(x) - f(2^{2}r_n e)r^2 x^2\| \\
\leq \|f((2^{2}r_n e)(rx)) - D((2^{2}r_n e)(rx))\| \\
+ \|D((2^{2}r_n e)(rx)) - r^22^{2}r_n e f(x) - f(2^{2}r_n e)r^2 x^2\| \\
\leq k\delta 4^{2}r_n e (r^2 p + r^2)\|x\|^{2p} + r^22^{2}r_n e \|x\|^{q}
\]
for all $x \in \mathcal{A}$ and all $n \in \mathbb{N}$. That is, we have
\[
\|f((2^{2n}e)(rx)) - r^2 2^{2n}ef(x) - f(2^{2n}e)r^2x^2\| \leq k\delta 4^{\tau n}(r^{2p} + r^2)\|x\|^{2p} + r^2 2^{\tau n}q\|x\|^q
\]
for all $x \in \mathcal{A}$ and all $n \in \mathbb{N}$. From (3) and (10), we obtain
\[
\|4^{\tau n}\{f(rx) - r^2 f(x)\}\|
\leq \|2^{2\tau n}ef(rx) + f(2^{\tau n}e)r^2x^2 - f((2^{\tau n}e)(rx))\|
+ \|f((2^{\tau n}e)(rx)) - r^2 2^{2\tau n}ef(x) - f(2^{\tau n}e)r^2x^2\|
\leq \varepsilon\|2^{\tau n}e\|\|rx\|^q + k\delta 4^{\tau np}(r^{2p} + r^2)\|x\|^{2p} + r^2 2^{\tau n}q\|x\|^q
= 2^{\tau n}(r^q + r^2)\varepsilon\|x\|^q + k\delta 4^{\tau np}(r^{2p} + r^2)\|x\|^{2p}
\]
for all $x \in \mathcal{A}$ and all $n \in \mathbb{N}$. This means that
\[
\|f(rx) - r^2 f(x)\|
\leq 2^{\tau (q-2)n}(r^q + r^2)\varepsilon\|x\|^q + k\delta 4^{\tau (p-1)n}(r^{2p} + r^2)\|x\|^{2p}
\]
for all $x \in \mathcal{A}$ and all $n \in \mathbb{N}$. If we take $n \to \infty$ in (11), then we arrive at
\[
f(rx) = r^2 f(x)
\]
for all $x \in \mathcal{A}$. This completes the proof since $r \in \mathbb{Q} \setminus \{0\}$ was arbitrary. \(\square\)

Now we are ready to prove the main result in this section.

Theorem 2.3. Suppose that \mathcal{A} is a unital Banach algebra. Let $\delta, \varepsilon \geq 0$ and let $p, q \geq 0$ with either $p < 1$, $q < 2$ or $p > 1$, $q > 2$. If $f : \mathcal{A} \to \mathcal{A}$ is a mapping satisfying (2) and (3), then $f : \mathcal{A} \to \mathcal{A}$ is a quadratic derivation.

Proof. Let D be a unique quadratic derivation as in Lemma 2.2. Put $\tau = 1$ if $p < 1$, $q < 2$ and $\tau = -1$ if $p > 1$, $q > 2$. Since $f(2^{\tau n}x) = 4^{\tau n}f(x)$ for all $x \in \mathcal{A}$ and all $n \in \mathbb{N}$ by Lemma 2.2, it follows from (4) that
\[
\|f(x) - D(x)\| = \|4^{\tau n}f(2^{\tau n}x) - 4^{\tau n}D(2^{\tau n}x)\|
\leq 4^{\tau n}k\delta\|2^{\tau n}x\|^{2p}
= 4^{\tau (p-1)n}k\delta\|x\|^{2p}
\]
for all $x \in \mathcal{A}$ and all $n \in \mathbb{N}$. Namely,
\[
\|f(x) - D(x)\| \leq 4^{\tau (p-1)n}k\delta\|x\|^{2p}
\]
for all \(x \in \mathcal{A} \) and all \(n \in \mathbb{N} \). Since \(\tau(p - 1) < 0 \), if we let \(n \to \infty \) in (12), then we conclude that \(f(x) = D(x) \) for all \(x \in \mathcal{A} \) which implies that \(f \) is a quadratic derivation.

\[\square \]

3. Stability of Generalized Homomorphisms via Cauchy Equation

We begin with our investigation establishing the stability of generalized homomorphisms via Cauchy equation. From now on, \(\mathcal{A} \) and \(\mathcal{B} \) denote Banach algebras.

Theorem 3.1. Let \(\varepsilon \geq 0 \). For each approximately generalized homomorphism \(f : \mathcal{A} \to \mathcal{B} \) corresponding to the Cauchy inequality

\[||f(\alpha x + \beta y) - \alpha f(x) - \beta f(y)|| \leq \varepsilon, \]

for all \(x, y \in \mathcal{A} \) and all \(\alpha, \beta \in \mathbb{U} = \{ \mu \in \mathbb{C} : |\mu| = 1 \} \), there exists a unique generalized homomorphism \(h : \mathcal{A} \to \mathcal{B} \) such that

\[||f(x) - h(x)|| \leq \varepsilon \]

for all \(x \in \mathcal{A} \).

Proof. Let us the second variable of \(F \) be fixed. Then, by hypothesis, for each fixed \(z \in \mathcal{A} \), the mapping \(F : \mathcal{A} \times \mathcal{A} \to \mathcal{B} \) satisfies the inequality

\[||F(\alpha x + \beta y, z) - \alpha F(x, z) - \beta F(y, z)|| \leq ||f(\alpha xz + \beta yz) - f(\alpha x + \beta y)f(z) - \alpha f(xz)f(z) + \alpha f(x)f(z) - \beta f(yz)f(z) + \beta f(y)f(z)|| \]

\[\leq (1 + ||f(z)||)\varepsilon, \]

that is, we obtain the inequality

\[||F(\alpha x + \beta y, z) - \alpha F(x, z) - \beta F(y, z)|| \leq (1 + ||f(z)||)\varepsilon \]

for all \(x, y \in \mathcal{A} \) and all \(\alpha, \beta \in \mathbb{U} \).

Putting \(\alpha = \beta = 1 \) in (15) and utilizing the Hyers’ direct method [10], there is an additive mapping in the first variable \(S : \mathcal{A} \times \mathcal{A} \to \mathcal{B} \) such that

\[||F(x, z) - S(x, z)|| \leq (1 + ||f(z)||)\varepsilon \]
for all \(x \in \mathcal{A}\), where
\[
S(x, z) = \lim_{n \to \infty} \frac{F(2^n x, z)}{2^n}
\]
for all \(x \in \mathcal{A}\). Replacing \(x, y\) by \(2^n x, 2^n y\) in (15), we get
\[
\|2^{-n}F(2^n(\alpha x + \beta y), z) - \alpha 2^{-n}F(2^n x, z) - \beta 2^{-n}F(2^n y, z)\| \leq 2^{-n}(1 + \|f(z)\|)\varepsilon
\]
for all \(x, y \in \mathcal{A}\) and all \(\alpha, \beta \in \mathbb{U}\). Taking limits as \(n \to \infty\), we obtain
\[
S(\alpha x + \beta y, z) = \alpha S(x, z) + \beta S(y, z)
\]
for all \(x, y \in \mathcal{A}\) and all \(\alpha, \beta \in \mathbb{U}\).

Clearly, \(S(0x, z) = 0 = 0S(x, z)\) for all \(x \in \mathcal{A}\). Now, let \(\lambda \in \mathbb{C}\) (\(\lambda \neq 0\)), and let \(M \in \mathbb{N}\) greater than \(|\lambda|\). By applying a geometric argument, we see that there exists \(\alpha_1, \alpha_2 \in \mathbb{U}\) such that \(2\frac{\lambda}{M} = \alpha_1 + \alpha_2\). By the additivity of \(S(\cdot, z)\), we get
\[
S(\frac{1}{2}x, z) = \frac{1}{2}S(x, z)
\]
for all \(x \in \mathcal{A}\). Therefore
\[
S(\lambda x, z) = S\left(\frac{M}{2} \cdot 2 \cdot \frac{\lambda}{M} x, z\right) = MS\left(\frac{M}{2} \cdot \frac{\lambda}{M} x, z\right) = \frac{M}{2}S((\alpha_1 + \alpha_2)x, z)
\]
\[
= \frac{M}{2}(\alpha_1 + \alpha_2)S(x, z) = \frac{M}{2} \cdot 2 \cdot \frac{\lambda}{M} S(x, z) = \lambda S(x, z)
\]
for all \(x \in \mathcal{A}\), so that the mapping \(S : \mathcal{A} \times \mathcal{A} \to \mathcal{B}\) is \(\mathbb{C}\)-linear in the first variable.

From the Hyers’ theorem [10], the inequality (13) with \(\alpha = \beta = 1\) guarantees that there exists a unique additive mapping \(h : \mathcal{A} \to \mathcal{B}\) defined by
\[
h(x) = \lim_{n \to \infty} \frac{f(2^n x)}{2^n}
\]
for all \(x \in \mathcal{A}\) satisfying the inequality (14). Applying a similar approach of (15)~(19) to (13), we see that \(h\) is \(\mathbb{C}\)-linear.

For each fixed \(x \in \mathcal{A}\), we note that the mapping \(F : \mathcal{A} \times \mathcal{A} \to \mathcal{B}\) satisfies the inequality
\[
\|2^{-n}F(2^n x, \alpha y + \beta z) - \alpha 2^{-n}F(2^n x, y) - \beta 2^{-n}F(2^n x, z)\|
\leq \|2^{-n}f(\alpha 2^n(xy) + \beta 2^n(z)) - 2^{-n}f(2^n x)f(\alpha y + \beta z)
\]
\[- \alpha 2^{-n}f(2^n(xy)) + \alpha 2^{-n}f(2^n x)f(y) - \beta 2^{-n}f(2^n(z)) + \beta 2^{-n}f(2^n x)f(z)\|
\leq 2^{-n}\|f(\alpha 2^n(xy) + \beta 2^n(z)) - \alpha f(2^n(xy)) - \beta f(2^n(z))\|
\]
\[+ 2^{-n}\|f(2^n x)\|\|f(\alpha x + \beta y) - \alpha f(x) - \beta f(y)\|
\leq 2^{-n}\varepsilon + 2^{-n}\|f(2^n x)\|\varepsilon,
\]
Letting \(n \to \infty \) in this inequality, it follows from (17) that the inequality
\[
\|S(x, \alpha y + \beta z) - \alpha S(x, y) - \beta S(x, z)\| \leq \|h(x)\|\varepsilon
\]
holds for all \(y, z \in \mathcal{A} \). Following the same process as (15)∼(19) with (20), it follows that the mapping \(H : \mathcal{A} \times \mathcal{A} \to \mathcal{B} \) defined by
\[
H(x, y) = \lim_{n \to \infty} \frac{S(x, 2^n y)}{2^n}
\]
for all \(z \in \mathcal{A} \), is \(\mathbb{C} \)-linear in second variable. Since \(S \) was \(\mathbb{C} \)-linear in first variable, \(H \) is also \(\mathbb{C} \)-linear in first variable. Hence, we conclude that \(H \) is \(\mathbb{C} \)-bilinear.

From (13), we obtain
\[
F(2^n x, y) = f(2^n (xy)) - f(y)
\]
for all \(x, y \in \mathcal{A} \), and so taking \(n \to \infty \) in (22) yields
\[
S(x, y) = h(xy) - h(x)f(y)
\]
for all \(x, y \in \mathcal{A} \). Replacing \(y \) by \(2^n y \) in (23), we get
\[
S(x, 2^n y) = h(xy) - h(x)f(2^n y)
\]
for all \(x, y \in \mathcal{A} \). Now, setting \(n \to \infty \) in the both sides of (24) gives
\[
H(x, y) = h(xy) - h(x)h(y)
\]
for all \(x, y \in \mathcal{A} \).

To show the continuity of \(H \) in \(x \in \mathcal{A} \) for each fixed \(y \in \mathcal{A} \) we use the way of [10]. Assume that \(F \) is continuous in \(x \in \mathcal{A} \) for each fixed \(y \in \mathcal{A} \). If \(S \) is not continuous at a point \(x \in \mathcal{A} \) for some fixed \(y_0 \in \mathcal{A} \), then there exist a positive integer \(\eta \) and a sequence \(\{x_n\} \) in \(\mathcal{A} \) converging to zero such that
\[
\|S(x_n, y_0)\| > \frac{1}{\eta}
\]
for all \(n \in \mathbb{N} \). Let \(k \) be an integer greater than \(3\eta\delta \), where \(\delta = (\|1 + f(y_0)\|\varepsilon) \). Then we have
\[
\|S(kx_n, y_0) - S(0, y_0)\| = \|S(kx_n, y_0)\| > 3\delta
\]
for all \(n \in \mathbb{N} \).

But, from (16), we obtain the inequality
\[
\|S(kx_n, y_0) - S(0, y_0)\| \leq \|S(kx_n, y_0) - F(kx_n, y_0)\| + \|F(kx_n, y_0) - F(0, y_0)\| + \|F(0, y_0) - S(0, y_0)\| \leq 3\delta
\]
for sufficiently large \(n \), since \(F(kx_n, y_0) \to F(0, y_0) \) as \(n \to \infty \). This contradiction means that \(S \) is continuous in \(x \in \mathcal{A} \) for each fixed \(y \in \mathcal{A} \). Hence, the relation (21) tells us that \(H \) is continuous in \(x \in \mathcal{A} \) for each fixed \(y \in \mathcal{A} \).

To prove that the mapping \(H \) defined by (25) is continuous in \(y \in \mathcal{A} \) for each fixed \(x \in \mathcal{A} \), let us the first variable of \(F \) be fixed. By the similar one to the manner obtaining the inequality (15), we see that for each fixed \(x \in \mathcal{A} \), the mapping \(F: \mathcal{A} \times \mathcal{A} \to \mathcal{B} \) satisfies the inequality

\[
\| F(x, \alpha y + \beta z) - \alpha F(x, y) - \beta F(x, z) \| \leq (1 + \| f(x) \|) \varepsilon
\]

for all \(y, z \in \mathcal{A} \) and all \(\alpha, \beta \in \mathbb{U} \). Now, the remainder of the proof carries over almost verbatim among (16)~(26). So we conclude that \(H \) is continuous in \(y \in \mathcal{A} \) for each fixed \(x \in \mathcal{A} \). Consequently, \(h \) is a generalized homomorphism. \(\square \)

4. Stability of Generalized Homomorphisms via Jensen Equation

Consider the Jensen equation

\[
2f\left(\frac{x + y}{2}\right) = f(x) + f(y).
\]

It is well known that a function \(f \) between vector spaces with \(f(0) = 0 \) satisfies the Jensen equation if and only if it is additive. In this section, we obtain the stability result of generalized homomorphisms via the Jensen equation.

Theorem 4.1. Let \(\varepsilon \geq 0 \) and let \(f: \mathcal{A} \to \mathcal{B} \) be an approximately generalized homomorphism corresponding to the Jensen inequality

\[
\left\| 2f\left(\frac{\alpha x + \beta y}{2}\right) - \alpha f(x) - \beta f(y) \right\| \leq \varepsilon,
\]

for all \(x, y \in \mathcal{A} \) and all \(\alpha, \beta \in \mathbb{I} = \{1, i\} \). For each fixed \(z \in \mathcal{A} \) (resp. \(x \in \mathcal{A} \)), there is a positive number \(r_z \) (resp. \(r_x \)) such that the real functions \(t \mapsto \| F(tx, z) \| \) (resp. \(t \mapsto \| F(x, tz) \| \)) is bounded on the interval \([0, r_z]\) (resp. \([0, r_x]\)). Then there exists a unique generalized homomorphism \(h: \mathcal{A} \to \mathcal{B} \) such that

\[
\| f(x) - h(x) \| \leq \varepsilon
\]

for all \(x \in \mathcal{A} \).
Proof. By hypothesis, for each fixed $z \in A$, the mapping $F : A \times A \to B$ satisfies the inequality
\[
\left\| 2F \left(\frac{\alpha x + \beta y}{2}, z \right) - \alpha F(x, z) - \beta F(y, z) \right\| \\
\leq \left\| 2f \left(\frac{\alpha x + \beta y}{2} \right) - 2f \left(\frac{\alpha x + \beta y}{2} \right) f(z) \right. \\
- \alpha f(xz) + \alpha f(x)f(z) - \beta f(yz) + \beta f(y)f(z) \left. \right\| \\
\leq \left\| 2f \left(\frac{\alpha x + \beta y}{2} \right) - \alpha f(xz) - \beta f(yz) \right\| \\
+ \left\| 2f \left(\frac{\alpha x + \beta y}{2} \right) - \alpha f(x) - \beta f(y) \right\| \| f(z) \| \\
\leq (1 + \| f(z) \|) \varepsilon,
\]
that is, we obtain the inequality
\[
\tag{29} \left\| 2F \left(\frac{\alpha x + \beta y}{2}, z \right) - \alpha F(x, z) - \beta F(y, z) \right\| \leq (1 + \| f(z) \|) \varepsilon
\]
for all $x, y \in A$ and all $\alpha, \beta \in I$.

Putting $\alpha = \beta = 1$ in (29) and using the Jung’s result [14], there is an additive mapping in the first variable $S : A \times A \to B$ such that
\[
\tag{30} \| F(x, z) - S(x, z) \| \leq (1 + \| f(z) \|) \varepsilon
\]
for all $x \in A$, where
\[
\tag{31} S(x, z) = \lim_{n \to \infty} \frac{F(2^n x, z)}{2^n}
\]
for all $x \in A$. By replacing x by $2^{n+1}x$ and letting $y = 0$ in (29), we get
\[
2^{-(n+1)} \left\| 2F \left(\frac{2^{n+1} x}{2}, z \right) - iF(2^{n+1} x, z) - F(0, z) \left\| \leq 2^{-(n+1)}(1 + \| f(z) \|) \varepsilon
\]
for all $x \in A$. Taking limits as $n \to \infty$, we obtain
\[
\tag{32} S(\text{i}x, z) = iS(x, z)
\]
for all $x \in A$. To prove the homogeneous property in the first variable of S, let us $g \in A^*$, where A^* is the dual of A, and define the additive function $\Upsilon : \mathbb{R} \to \mathbb{R}$ by
\[\Upsilon(t) = g(S(tx, z)). \] The function is bounded since
\[
|\Upsilon(t)| \leq \|g\| \|S(tx, z)\|
\leq \|g\|\|(S(tx, z) - F(tx, z))\| + \|F(tx, z)\|
\leq \|g\|\left((1 + \|f(z)\|)\varepsilon + \sup\{\|F(tx, z)\| : t \in [0, r_z]\} \right).
\]
(33)

It follows from Corollary 2.5 of [1] that \(\Upsilon(t) = \Upsilon(1)t \) for all \(t \in \mathbb{R} \). Hence we get
\[g(S(tx, z)) = g(tS(x, z)) \]
for all \(t \in \mathbb{R} \) and all \(g \in \mathcal{A}^* \) which implies that \(S(tx, z) = tS(x, z) \) for all \(t \in \mathbb{R} \).

Now, for each complex number \(\lambda = u + iv \), we have
\[
S(\lambda x, z) = S(ux + ivx, z)
= S(ux, z) + S(ivx, z)
= uS(x, z) + ivS(x, z) = \lambda S(x, z),
\]
(34)
that is, the mapping \(S : \mathcal{A} \times \mathcal{A} \to \mathcal{B} \) is \(\mathbb{C} \)-linear in the first variable.

From Jung’s result [14], the inequality (27) with \(\alpha = \beta = 1 \) implies that there exists a unique additive mapping \(h : \mathcal{A} \to \mathcal{B} \) defined by
\[h(x) = \lim_{n \to -\infty} \frac{f(2^n x)}{2^n} \]
for all \(x \in \mathcal{A} \) satisfying the inequality (28). Applying a similar approach to (29)~(34) to (27), we see that \(h \) is \(\mathbb{C} \)-linear. The remainder of the proof follows the similar argument as in the proof of Theorem 2.1. Therefore, \(h \) is a generalized homomorphism. \(\square \)

References

Department of Mathematics Education, Seowon University, Cheonju, Chungbuk 361-742, Korea

Email address: parkkh@seowon.ac.kr

bDepartment of Mathematics, Sun Moon University, Asan, Chungnam 336-708, Korea

Email address: yrsjung@sunmoon.ac.kr