THE PERIODIC JACOBI MATRIX PROCRUSTES PROBLEM

  • Received : 2009.10.31
  • Accepted : 2009.12.10
  • Published : 2010.05.30

Abstract

The following "Periodic Jacobi Procrustes" problem is studied: find the Periodic Jacobi matrix X which minimizes the Frobenius (or Euclidean) norm of AX - B, with A and B as given rectangular matrices. The class of Procrustes problems has many application in the biological, physical and social sciences just as in the investigation of elastic structures. The different problems are obtained varying the structure of the matrices belonging to the feasible set. Higham has solved the orthogonal, the symmetric and the positive definite cases. Andersson and Elfving have studied the symmetric positive semidefinite case and the (symmetric) elementwise nonnegative case. In this contribution, we extend and develop these research, however, in a relatively simple way. Numerical difficulties are discussed and illustrated by examples.

Keywords

Acknowledgement

Supported by : National Natural Science Foundation of China

References

  1. R.A. Horn and C.R. Johnson, Topics in Matrix Analysis, Cambridge University Press, New York, 1991.
  2. G.H. Golub and C.F. Van Loan, Matrix computations, 2nd ed. Johns Hopkins University Press, Baltimore, Mayland, 1989.
  3. N.J. higham, The symmetric prorustes problem, BIT 28 (1988), 133-143. https://doi.org/10.1007/BF01934701
  4. L.E. Andersson and T. Elfving, A constrained procrustes problem, SIAM J. Matrix Anal. Appl. 18 (1997), 124-139. https://doi.org/10.1137/S0895479894277545
  5. J.E. Brock, Optimal matrices describing linear systems, AIAA Journal 6 (1968), 1292-1296. https://doi.org/10.2514/3.4736
  6. J.C. Gower, Multivariable analysis: Ordination, multidimensional scaling and allied topics, in: Handbook of Applicable Mathematics, Vol. VI: Statistics, ed. E.H. Lloyd (Wiley, Chichster, 1984) pp. 727-781.
  7. B. Green, The orthogonal approximation of an oblique structure in factor analysis, Psychometrika 17 (1952), 429-440. https://doi.org/10.1007/BF02288918
  8. P. Schonemann, A generalized solution of the orthogonal Procrustes problem, Psychometrika 31 (1966), 1-10. https://doi.org/10.1007/BF02289451
  9. H.J. Larson, Least-squares estimation of the components of a symmetric matrix, Technometrics 8 (1966), 360;-362. https://doi.org/10.2307/1266370
  10. A. Ruhe, Cloest normal matrix finally found!, BIT 27 (1987), 585-598. https://doi.org/10.1007/BF01937278
  11. N.J. higham, Computing a nearest symmetric positive semi-definite matrix, Linear Algebra Appl. 103 (1988), 103-118. https://doi.org/10.1016/0024-3795(88)90223-6
  12. M.G. Eberle and M.C. Maciel, Finding the closest Toeplitz matrix, Comput. Appl. Math. 1 (2003), 1-18.
  13. H. Hu and I. Olkin, A numerical procedure for finding the positive definite matrix cloest to a patterned matrix, Stat. Prob. Letters, 12 (1991), 511-515. https://doi.org/10.1016/0167-7152(91)90006-D
  14. F.Z. Zhou, X.Y. Hu and L. Zhang, The solvability conditions for the inverse problems of symmetric-ortho-symmetric matrices, Appl. Math. Comput. 154 (2004), 153-166. https://doi.org/10.1016/S0096-3003(03)00698-2
  15. D.X. Dong, L.Zhang and X.Y. Hu, The solvability conditions for the inverse problem of bisymmetric nonnegative definite matrices, J. Comput. Math. 6 (2000), 597-608.
  16. Y. Lei, A.P. Liao and L. Zhang, Minimization problem for symmetric orthogonal antisymmetric matrices, J. Comput. Math. 25 (2007), 211-220.
  17. S.A. Andrea and T.G. Berry, Continued fractions and periodic Jacobi matrices, Linear Algebr. Appl. 161 (1992), 117-134. https://doi.org/10.1016/0024-3795(92)90008-X
  18. B. Beckermann and V. A. Kaliaguine, The diagonal of the Pade table and the approximation of the Weyl function of second order difference operators, Constr. Approx. 13 (1997), 481-510. https://doi.org/10.1007/s003659900056
  19. A. Almendral Vazquez, The Spectrum of a Periodic Complex Jacobi Matrix Revisited, J. Approx. Theo. 105 (2000), 344-351. https://doi.org/10.1006/jath.2000.3480