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COLLOCATION METHOD USING QUARTIC B-SPLINE FOR
NUMERICAL SOLUTION OF THE MODIFIED EQUAL WIDTH
WAVE EQUATION

SIRAJ-UL-ISLAM, FAZAL-I-HAQ* AND IKRAM A. TIRMIZI

ABSTRACT. A Numerical scheme based on collocation method using quartic
B-spline functions is designed for the numerical solution of one-dimensional
modified equal width wave (MEW) wave equation. Using Von-Neumann
approach the scheme is shown to be unconditionally stable. Performance
of the method is validated through test problems including single wave,
interaction of two waves and use of Maxwellian initial condition. Using
error norms Ly and Lo, and conservative properties of mass, momentum
and energy, accuracy and efficiency of the suggested method is established
through comparison with the existing numerical techniques.
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1. Introduction
We consider a model for nonlinear waves, the MEW equation
us + euug — puggr = 0. , (1)
subject to the following physical boundary conditions
u(a, t) = /317 U(b, t) = ;82) (2)
along with collocation boundary conditions necessary for unique quartic B-spline
solution
uz(a,t) = uzg (b, t) = 0, uge(a,t) = uge(b, t) =0, (3)
and initial condition ‘
u(z,0) = f(z), a<z <b. (4)
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The parameter p is a positive constant and € is an arbitrary constant, f(z) is
a localized disturbance inside the interval [a,b] and u — 0 as z — Foo. Here
the subscripts ¢ and = denote differentiation with respect to t and x respectively.
The MEW equation was introduced by [9] as a model for nonlinear dispersive
waves and is related to the modified regularized long wave (MRLW) equation
[1] and the modified Korteweg-de Vries (MKdV) equation [6]. Many authors
have investigated numerical solution of the problem (1)-(4). These include finite
difference method [4], He’s variational iteration method [7], tanh and sine-cosine
methods [13] and various forms of finite element methods including collocation
and Galerkin methods, (see [3, 5, 11, 12, 14] and the references therein).

In Refs. [5, 11, 12, 14] the MEW equation is solved numerically by collocation
methods based on quadratic, cubic and quintic B-splines. The present method
solves Egs. (1)-(4) by using quartic B-spline collocation method. In Section 2,
a new numerical method is developed. The stability analysis of the method is
established in section 3 and test problems are reported in section 4 to validate
performance of the method.

2. Quartic B-spline solution

In order to develop the numerical method for approximating solution of bound-
ary value problems like the one given in Egs. (1)-(4), the interval [a, b] is par-
titioned into N + 1 uniformly spaced points z,, such that a = zo9 < 1 <

- < xzy_1 < zny = band h = b;,—“. The quartic B-splines B,,(z),m =
—2,—1,..., N +1 at the knots z,, are defined as [10]:

(di = (z = Zm-2)*, [m—2, Tm—1],
d2=d1 —5($—-.’Em_1)4, [IL'm_l,CEm],
B = | o o s e oy, ©
m+3 Tmt2 — )%, [Tm+1, Tmta),
Tmys — )t [Tm+2, Tm+3),
0, otherwise,

and the set of quartic B-splines {B_2, B_1,..., By+1} forms a basis over the
interval [a, b]. The numerical solution U(z,t) to u(z,t) is given as:

N+1

U,t)= Y 6m(t)Bm(z), (6)

m=-—2

where 0,,(t) are time dependent parameters to be determined at each time level.
The nodal values Uy,, U, and U,] at the knots x,, are derived from Egs. (5)-(6)
in the following form

Um = Om-2 + 115m—1 + 116m + 5m+1,

Urln = %('—(5771_2 — 301+ 30, + 5m+1); (7)
U7l7'/z = ;1172((5972—2 - 5m-—l - 5m + 5m+1)~
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Eq. (1) can be rewritten as
(u — puzz)e + eu’uy = 0. (8)
Apply forward difference formula and §-weighted scheme (0 < 6 < 1) to the
above equation, we get
(Urtt —pUz ) — (U™ = pUz,)
At

where At is time step and the superscripts n and n + 1 denote the adjecent time
levels. Take 6§ = 1. Eq.(9) gives

(U™ —pURY) — (U™ — pUY) + E(UQUI)"H + (U2U)" _

+ 0e(UUL)" ™ + (1 — 0)e(UU,)" =0, (9)

0. 10

At 2 (10)

The nonlinear term in Eq. (10) is approximated using the Taylor series:
(UHHyrtl x (UAHmUrH 4 umUnrU - 2(UHMUL. (11)

At the nth time step, we denote U,,,U,,, U, at the knots x,, by the following
expressions:
L1 =00, _o +1160, 1 + 1167, + 0,4,
Lz = 3(=0p,_5 — 30,1 + 307, + 07 11), (12)
L3 = 72 (8—0 — Oy — 05, + 07 41)-
Using the knots z,,, m = 0,1, ..., N as collocation points, the following recurrence
relation at point z,, is obtained using Egs. (10)-(12):

am10mY + ama 0ty 4 @m0l + amadty = h3(2Lm1 + €AtL2,; Lina — 2uLms3),

(13)

where 9

ami = Lmo— 4€AthLm1 — 24p,

am2 = 11Lp0 —12eAthL? | + 24u,

am3 = 11Lpo+ 12¢AthL2,| + 244,

ama = Lmo+4eAthL? | — 24y,

Lo = 2h2(1 =+ ELmleQ)a

m = 0,1,...,]V.

The Eq. (13) relates parameters at adjacent time levels and gives N +1 equations
in N + 4 unknowns ¢;,7 = —2,—1,..., N+ 1. In order to get a unique solution;

we eliminate the parameters {6_2,0_1,dn+1}. Using Eq. (7) and the boundary
conditions, the values of the parameters take the form

0o = i—350 + %51 - %51:
0_1=—18 — 16, + 301, (14)
ON+1 = —0n—2 — 110n_1 — 116N + Ba.

Elimination of the above parameters from Eq. (13) yields a 4-banded linear

system of N + 1 equations in N + 1 unknown parameters. The linear system
can be solved by a four-diagonal solver successively for 6], n = 1,2,...,; once
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we calculate the initial parameters d_,. Finally the approximate solution U(z, t)
will be obtained from Eq. (7).

Using the initial and boundary conditions, the values of the initial parameters
80 at the initial time are determined with the help of the following expressions:

U'(z9,0) = % (=62, — 302, + 307 4+ d3) =0,
12
U"(z,0) = 73 (62, — 6%, — & +47) =0,
U(zm,0) = (T, 0) = 60 _o+1162 | | +118% 4+ 6% .1 = f(zm), (15)
4
U'(zn,0) = 7 (=0%—2 —30%_1 + 3011 + 8%42) =0,
m = 0,1,...,N.

Eq. (15) consists of a linear (N +4) x (N + 4) system which can also be solved
by a four-diagonal solver.

3. Stability analysis

In this section we apply the Von-Neumann stability method [8] for the stability
of scheme developed in the previous section. Since this method is applicable to
linear schemes, the nonlinear term u?u, is linearized by taking u as a constant
value k£ . The linearized form of proposed scheme takes the form

plé?ntlz + P25::;t11 + p3dmtt + P40y = PaOm_2 + P30y 1 + p20py, + P1dm, (16)

where

p1 = 2h% —24u — 4hAtek?,
pa = 22h% + 24pu — 12hAtek?,
ps = 22h% +24p + 12hAtek?,
ps = 2h%—24p+ 4hAtek®*, m=0,1,...,N.
Substitution of 67 = exp(iBmh)&™,i = +/—1 into Eq. (16) leads to
£{p1 exp(—2iph) + p2 exp(—iBh) + p3 + ps exp(ifh)} (17)

= psexp(~2iBh) + p3 exp(—iBh) + p2 + p1 exp(iBh).m
Simplifying Eq. (17), we get

A+iB
= , 18
£ C +1iD (18)
where
A = 22h% — 12y 4 24p + (24h® + 8v) cos(hB) + (2h* + 4y — 24p) cos(2h0),

(—20h® — 16y — 48u) sin(hB) + (—2h* — 4y + 244) sin(2hB)

22h% + 12 + 24u + (24h2 — 8y) cos(hB) + (2h2 — 4y — 24p) cos(2hB),
= (—20h% + 16y — 48u) sin(hB) + (—2h* + 4v + 24p) sin(2h)
= dtheh®.

2 b aw
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After simplification, we obtain same expressions for A? + B? and C? + D? in
the following form:

A’+B* = C*+D?
= 8(122h" + 404 + 240R°p + 28817)
+8 (143h* — 1242 + 24h% — 14444%) cos(hB) (19)

+8 (22h* — 24~% — 240h% 1 — 2881%) cos(2hP)
+8 (h* — 4v* — 24R*p + 1444°) cos(3h0),

so that | £ |?>= 1 and the linearized numerical scheme for the MEW equation is
unconditionally stable.

4. Test problems and discussion

In this section the numerical method outlined in the previous section is tested
for a single solitary wave and interactions of two solitary waves. Moreover, the
Maxwellian initial condition is also considered. The accuracy of the scheme is
measured in terms of the root mean square and maximum norms given by

N
LOO=MGSL‘2'|U1'—UZ'|, Loy = hZ(Ui—Ui)Qa )

1=1

where u and U are exact and approximate solutions respectively. The exact
solitary wave solution of MEW equation is given in [3]:

u(z,t) = Asech(k(x — xo — ct))) (20)

where c = 9‘—2—2 and k = \/%7 A, c represent the amplitude and velocity of a single

solitary wave initially centered at zo. The initial condition for the above problem
is given by '

u(z,0) = Asech(k(z — o)), (21)

and the boundary conditions are taken from Eq. (2) with £; = 2 = 0. We exam-
ine the conservation properties of the MEW equation related to mass, momentum
and energy by calculating the following three invariants [14]:

b b b
Ch =/ udz, Cs =/ (u? + pu2)dz, Cs =/ uldz. (22)

Integrals in Eq. (22) can be approximated by the trapezoidal rule.
4.1. A single solitary wave

Problem 1. To compare our results with [3,4,5,11], we choose the following
parameters:

a=0b=80,e=3 A=0.25h=0.1, At =0.2,0.05, g =1, z¢ = 30.
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In order to find error norms and the invariants Cy, Cy, C3 at different times,
the computations are carried out for times upto ¢ = 20. We have compared
present method with earlier published papers [3, 4, 5, 11] at ¢ = 20 and the
results are reported in Table 1. At t = 20 the error norms of the present method
are Lo, = 0.010451x 1074, 0.009269x10~% and L, = 0.015789x 104, 0.007867 x
10~% for the time steps 0.2 and 0.05 respectively. It is clear from Table 1 that
the errors in Cy, Cs, C3 approach zero during the simulation, showing excellent
conservation properties of the new method. Hence the performance of the new
method is better than the above mentioned methods. Fig. 1 shows the graphs
of the single solitary wave solutions at ¢ = 0, 20 . Initially the centre of solitary
wave of amplitude 0.25 is located at z = 30 . At time t = 20 its magnitude is
0.249922 centered at £ = 30.6. The absolute difference in amplitudes over the
time interval [0, 20] is observed to be 7.8 x 1075 while it is 2 x 1075 in the
case of velocities. It can be concluded that the solitary wave moves to the right
with almost constant magnitude and velocity. The error graph at time ¢t = 20
is reported in Fig. 2. It is clear from the graph that the maximum errors occur
around the central position of the solitary wave.

The pointwise rates of convergence in space and time are calculated using the
following expressions respectively, [2]:

loglo (“u - Uhi ”/”u - Uhi+1 ") and loglO (”u - UAti ”/”u - UAtiJrl ”)
logyg (hi/hit1) logyg (At;/Atiy1) ,

where u represents exact solution and Up, and Upa;, the numerical solutions
with spatial step size h; and time step size At; respectively. Computations are
carried out with different spatial and time step sizes in order to examine the point
rates of convergence in space and time. In order to caculate the spatial rate of
~ convergence the time step is kept fixed at At = 0.05 and the number of collocation
points N = 80, 160, 320, 640; 800 is varied. The results are recorded in Table 2.
It can observed from the table that the convergence rate decreases with the
smaller spatial step size. For the computation of the time rate of convergence
the number of collocation points is kept fixed at N = 600 and the time step size
At; = 1, 0.5, 0.25, 0.125 is varied. The results are tabulated in Table 3. It is
concluded from the table that the time rate of convergence almost decreases for
the smaller time step size.

The same problem is also considered for different values of the amplitude at
time step of 0.01. In Table 4 the error norms and invariants are summarized
for A = 0.25, 0.5, 0.75, 1.0. It is observed that the errors are smaller and the
invariants remain constant during the simulation. The new method is compared
with [4] and the comparison of error norms declares superiority of our scheme.
Fig. 3 shows the graphs of the solutions for A = 0.25, 0.5, 0.75, 1.0 at t = 20 .

Problem 2. In order to compare our method with earlier work [3,12,14] we
choose the parameters

a=0,b="70,¢e=3, A=0.25 05, 1.0, h=0.1, At =0.05, u = 1, 2o = 30.
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TABLE 1. Invariants and error norms for Problem 1 with single solitary wave

At Time Lo x 107 Lo x107 O Co C3

0.2 0 0.0 0.0 0.785398 0.166667 0.005208
5 0.002706  0.004075 0.785398 0.166667 0.005208
10 0.005377  0.008094 0.785398 0.166667 0.005208
15 0.007944  0.012009 0.785398 0.166667 0.005208
20 0.010451  0.015789 0.785398 0.166667 0.005208
20[4] 2576377  2.701647 0.785398 0.166474 0.005208
20[5] 1.569539  2.021476 0.785286 0.166582 0.005206
20[11] 1.744330  1.958879 0.784668 0.166434 0.005194

005 0 0.0 0.0 0.785398 0.166667 0.005208
5 0.002357  0.002128 0.785398 0.166667 0.005208
10 0.004788  0.004186 0.785398 0.166667 0.005208
15 0.007141 0.006114 0.785398 0.166667 0.005208
20 0.009269  0.007867 0.785398 0.166667 0.005208
20(3) 0.465523  0.796940 0.785390 0.166761 0.005208
20[4] 2.569972  2.692812 0.785398 0.166474 0.005208
20(5] 2.498925  2.905166 0.784955 0.166477 0.005200

€e=3,,A=025h=01pu=120=30,0<z <80

TABLE 2. Spacerate of convergenceat t = 20, A = 0.25, At = 0.05, 79 =
30,0<z< 80

N Ly Order
80 1.1371E—° 4.7773
160 4.1468° 4.4718
320 1.8687E~% 4.0216
640 1.506E-7  4.2560

TABLE 3. Time rate of convergence at t = 20, A = 0.25, N = 600, xg =
30,0< < 80

At; Loo Order

1 2.5234E~° 2.9770

0.5 3.2049°6 2.4048
0.25 6.0520E~7 0.7441
0.125 3.6132E-7 0.9768

The simulation is performed upto time ¢ = 20. Error norms and invariants are
recorded for different values of ¢ and tabulated in Table 5. It is observed that the
accuracy of the scheme in terms of error norms increases for decreasing values of
A. For A =1,0.25 and ¢ = 20 the error norms of the present method are found
as Loo = 1.095929 x 1072, 9.27 x 1077 and Lo = 1.747622 x 1073, 7.878 x 107",

The invariant quantities Cy, Cs, Cs are almost constant during the simulation.
In Table 5 we have also compared our results with lumped Galerkin method using
quadratic B-spline functions [3], collocation and petro- Galerkin methods using
quintic B-splines [12, 14] at ¢ = 20. In this problem it is observed that the
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TABLE 4. Invariants and error norms for Problem 1 with single solitary
wave for various values of A

A Time "Ly x 10 Lo x10Y ¢ Co Cs

025 0 0.0 0.0 0.785398 0.166667 0.005208
5 0.002431  0.002174  0.785398 0.166667 0.005208
10 0.004952  0.004282  0.785398 0.166667 0.005208
15 0.007409  0.006267  0.785398 0.166667 0.005208
20 0.009651  0.0080877 0.785398 0.166667 0.005208
20[4] 2.569562  2.692249 - - -

050 0 0.0 0.0 1.570796 0.666667 0.083333
5 0.018825  0.015873  1.570796 0.666667 0.083333
10 0.028470  0.026252  1.570796 0.666667 0.083333
15 0.028486  0.032155 1.570796 0.666667 0.083333
20 0.028502  0.036027 1.570796 0.666667 0.083333
20[4] 14.57568  18.26059 - - -

075 0 0.0 0.0 2.356194 1.500000 0.421875
5 0.035184  0.039624  2.356194 1.500000 0.421875
10 0.033608  0.047029 2.356194 1.500000 0.421875
15 0.035750  0.049007 2.356194 1.500000 0.421875
20 0.036156  0.051698  2.356194 1.500000 0.421875
20[4] 30.91793  43.95711 - - -

1.0 0 0.0 0.0 3.141593 2.666667 1.333333
5 0.095600 0.133043  3.141593 2.666667 1.333333
10 0.185455  0.261374  3.141593 2.666667 1.333333
15 0.276137  0.403847  3.141593 2.666667 1.333333
20 0.366993  0.549764  3.141593 2.666667 1.333333
20[4] 56.82131  82.85314 - -

€=3,h=01,At=00L, u=1,720=230,0<x <80

825 825
=0 =20

82 82}

815 845,
3 2

81 8ir

885 888 J
N j , . . ° L
@ 18 0 38 48 58 58 78 88 2 18 i 8 4% 56 55 78 86
x x

Figure 1. Single solitary wave solution at ¢ = 0, 20

accuracy of different schemes also depend on amplitude A. Performance of the
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Figure 2. Error graph at t = 20
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Figure 3. Solitary wave solution for various values of A at t = 20

present method is better than [3, 14] when A=0.25 but [12] has an edge in this
case. Our scheme is comparable with [14] for A = 0.50 while [12] performs
better. Furthermore for this problem error norms in Refs. [12, 14] are less than
the present method when A = 1.

4.2. Interaction of two solitary waves

Problem 3. For the sake of comparison with the results of Refs. [3,5,12], the
following parameters are chosen

€=3,A41 =10, A42=0521=1522=30, u=1,h=0.1, At =0.2, 0 < z < 80.
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TABLE 5. Invariants and error norms for Problem 2 with single
solitary wave

A Time L x10° Lo x10° Co Cs

025 0 0.0 0.0 0.785398 0.166667 0.005208
5 0.000236  0.000213 0.785398 0.166667 0.005208
10 0.000479  0.000419 0.785398 0.166667 0.005208
15 0.000714  0.000611 0.785398 0.166667 0.005208
20 0.000927  0.000787 0.785398 0.166667 0.005208
20(5] 0.046009  0.080145 0.785393 0.166764 0.005208
20[12] 0.00032 0.00027  0.785398 0.166667 0.005208
20[14] 0.00203 0.00345 0.78539 0.16667  0.00521

050 0 0.0 0.0 1.570796 0.666667 0.083333
5 0.002090 0.003158 1.570796 0.666667 0.083333
10 0.004018  0.005902 1.570796 0.666667 0.083333
15 0.005900 0.008422 1.570796 0.666667 0.083333
20 0.007787  0.010999 1.570796 0.666667 0.083333
20[12] 0.00640 0.00920 1.570796 0.666667 0.083333
20(14] 0.00852 0.01172  1.57078 0.66666  0.08333

1.0 0 0.0 0.0 3.141593 2.666668 1.333333
5 0.266834  0.410369 3.141593 2.666663 1.333329
10 0.541117 0.845886 3.141593 2.666659 1.333324
15 0.817482  1.294345 3.141593 2.666654 1.333320
20 1.095929  1.747622 3.141593 2.666650 1.333316
20[12] 0.65318 1.04778  3.141593 2.666667 1.333334
20[14] 0.08360 0.14465  3.14165 2.66676  1.33343

€e=3,h=01, At =005 u=1,20=30,0<2 <70

To study the interaction of two solitary waves we use the following initial
condition:

2
u(z,0) = ZAisech(k(a: — i), (23)
1

pm [ o L
e T VB

The parameters give two solitary waves having amplitudes of ratio 2 : 1 and
their peak positions are located at z = 15 and 30. The analytical values of the
invariants Cq, Ca, C3 for the above parameters are given in [5, 12] as:

where

8 - 8
Cr = (A1 + Ag) = 4712389, C2 = 2 (A? + A3) =3.333333,C;3 = 3 (A1 + A3) = 1.416667

The calculations are performed from ¢t = 0 to ¢ = 80 and values of the invariant
quantities C1, C3, C3 are tabulated in Table 6 for the present method and are
compared with Refs. [4, 5]. It can be seen from the table that the invariants
remain satisfactorily constant throughout the simulation. The upper bounds for
absolute error in the invariants Ci, Co, C5 from t = 0 to t = 55 are less than
1.0 x 1077, 2.6 x 1072 respectively. The same errors in Refs. [4, 5] are less than
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TABLE 6. Invariants for Problem 3 with interaction of two waves

present method [ 4] ] [5]
Time () Co Cs C1 Co C3 [ Ca Cg
0 4.712389 3.333337 1.416669 4.712388 3.329462 1.416669 4.712383 3.332357 1.416670
10 4.712389 3.332777 1.416108 4.712389 3.328927 1.416103 4.712022 3.324678 1.400768
20 4.712389 3.332191 1.415520 4.712387 3.328361 1.415523 4.711697 3.324210 1.401182
30 4.712389 3.330775 1.413861 4.712388 3.327818 1.413882 4.711242 3.346583 1.424847
40 4.712389 3.330942 1.414043 4.712385 3.327112 1.414050 4.711017 3.321250 1.398239
50 4.712389 3.330976 1.414314 4.712388 3.326632 1.414330 4.710804 3.320956 1.398729
55 4.712389 3.330701 1.414043 4.712386 3.326393 1.414062 4.710630 3.323628 1.399068
GO 4,712389 3.330417 1.413763 4.712388 3.326228 1.413785 ~ - -
7 4.712389 3.320849 1.413199 4.712388 3.325891 1.413228 - - -
80 4.712389 3.329283 1.412635 4.712389 3.325434 1.412671 -

e=3, A =1 A, =05, 2:1=15,22=30, h=0.1, At =02,0< < 80

TABLE 7. Invariants quantities for Problem 3 with interaction
of two waves

present method | [12]
Time C4 Co C3 Ch Co Cy

0 4.712389 3.333336 1.416669 4.7123884 3.3333358 1.4166697

5 4.712389 3.333336 1.416669 4.7123895 3.3333358 1.4166697
10 4.712389 3.333336 1.416669 4.7123896 3.3333358 1.4166697
15 4.712389 3.333335 1.416668 4.7123896 3.3333358 1.4166697
20 4.712389 3.333334 1.416667 4.7123886 3.3333358 1.4166696
25 4.712389 3.333332 1.416664 4.7123896 3.3333358 1.4166690
30 4.712389 3.333318 1.416647 4.7123896 3.3333359 1.4166648
35 4.712389 3.333295 1.416615 4.7123897 3.3333359 1.4166568
40 4.712389 3.333325 1.416655 4.7123896 3.3333358 1.4166669
45 4.712389 3.333332 1.416664 4.7123896 3.3333357 1.4166695
50 4.712389 3.333332 1.416665 4.7123896 3.3333357 1.4166698
55 4.712389 3.333332 1.416665 4.7123896 3.3333357 1.4166698

e=3,A1=1 A2 =0521=15,22 =30, h=0.1, At =0.025,0< 2 < &0

2.0x107%, 3.1x1073, 2.6x1073, 2.6x103 and 1.8x1073, 8.7x1073, 1.8x1072.
Fig. 4 shows thestate of interaction and then separation of solitary waves at times
t = 30, 35, 40 and ¢t = 55, 80 in sequel. Initially the larger wave of amplitude 1
is centered at x = 15 and the smaller one of amplitude 0.5 at z = 30. Since the
velocity of larger wave is 0.5 and that of the smaller 0.125, the larger wave moves
faster than the smaller and hence collides with it. At ¢ = 80 the amplitude of
the larger wave is 0.9993 centered at z = 56.8 and that of smaller 0.4988 with
peak position located at x = 37.7. Hence during this interaction the amplitude
is almost unchanged. The absolute difference in amplitude for larger wave is
7.0 x 107% and that of smaller 1.2 x 1073, consequently the velocities of the
waves are almost maintained after the interaction. Thus the waves interact and
then emerge from the collision by preserving their shapes and velocities. We
have solved the same problem with At = 0.025 and the invariants are reported
in Table 7 along with those of Ref. [12]. It is evident from the comparison of
Tables 6-7 that the conservation properties of the present method are excellent
when time step is reduced.

4.3. The Maxwellian initial condition
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Figure 4. Interaction of two solitary waves at selected times

Problem 4. The birth of solitary waves is considered using the Mazwellian initial
condition

u(z,0) = exp (—2?) (24)
The following parameters are chosen
e=3,u=1, 0.5, 0.1, 0.05, 0.02, 0.005, h = 0.1, At = 0.01, —20 < 2 < 20.

In the case of Maxwellian condition the behavior of the solution depends on
the values of u. The Maxwellian does not break up into solutions for u >> u.
where u. is some critical number, and exhibits rapidly oscilating wave packets.
When p =~ pu., a mixed type of solution is obtained consisting of a leading soliton
with an oscillating tail [14]. The Maxwellian breaks up into a number of solitons
according to the value of u when p << p.. Simulations are performed upto time
t = 12. For p = 1, 0.5 the Maxwellian shows an oscillatory behavior and no
clean waves are obtained as shown in Fig. 5. For u = 0.1, 0.05, 0.02, 0.005 the
number of observed solitary waves is 1, 2, 3, 7 respectively as shown in Fig. 5.
The graphs are in good agreement with earlier work [12, 14]. It is also clear from
Fig. 5 that the peaks of solitary waves lie on the straight line. For various values
of 1 the conservative quantities are tabulated in Table 8 which remain almost
constant during the simulation.

5. Conclusion

Quartic B-spline collocation method is employed to model the motion and
interaction of solitary waves of the MEW equation. Four test problems are chosen
from literature to validate performance of the suggested method. The maxwellian
initial condition is also studied. The accuracy of the method is checked through
Lo, L. error norms and the conserved quantities Cy, Cs, Cs. It has been
observed that the errors are sufficiently small and the invariants are almost kept
constant during simulation. The obtained results are in agreement with some
earlier results from literature. Linear stability analysis proved that the new
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TABLE 8. Invariants for Maxwellian initial condition

7 Time C1 Cy Csy

1 0 1.772454 2.506634 0.886227
3 1.772453 2.506637 0.886223

6 1.772456 2.506629 0.886231

9 1.772456 2.506627 0.886232

12 1.772456 2.906627 0.886232

0.5 0 1.772454 1.879974 0.886227
3 1.772452 1.879979 0.886219

6 1.772454 1.879972 0.886227

9 1.772454 1.879972 0.886227

12 1.772454 1.879972 0.886226

0.1 0 1.772454 1.378646 0.886227
3 1.772437 1.378721 0.886144

6 1.772435 1.378718 0.886138

9 1.772430 1.378715 0.886130

12 1.772427 1.378712 0.886123

0.05 0 1.772454 1.315980 0.886227
3 1.772355 1.316331 0.885265

6 1.772273 1.315714 0.884471

9 1.772224 1.315072 0.883746

12 1.772167 1.314636 0.883001

e=3,h=01, At =001, -20< <20

1 1

o5l /;: o5l ;z=0.5
0| o
0. . ) n ' 0. s L L y
% 10 o 10 20 %5 ETE ) 10 20
15¢ 15¢
1t ;L=0.f A 1t ;1=0.05 A
051 0.5}
b} //L o /\A
.20 e o 10 20 .20 0 o 10 20
1.5+ 15
4} #=0.02 ) 4| #=0.005
0.5¢ 0.5
o o
20 0 ) 1 20 20 10 o 16 20

Figure 5. Maxwellian initial condition for different values of p at t =12

method is unconditionally stable theoretically and this has been supported by
the test problems as well.
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