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POSITIVE SOLUTION FOR FOURTH-ORDER FOUR-POINT
STURM-LIOUVILLE BOUNDARY VALUE PROBLEM

JIAN-PING SUN* AND XIAO-YUN WANG

ABSTRACT. This paper is concerned with the following fourth-order four-
point Sturm-Liouville boundary value problem

u® (t) = f(t,u(t), v’ (t), 0< <,
au (0) — Bu’ (0) = yu (1) + 5’ (1) =0,
au’ (§1) — bu'"" (£1) = cu”’ (§2) + du'’ (§2) = 0.

Some sufficient conditions are obtained for the existence of at least one
positive solution to the above boundary value problem by using the well-
known Guo-Krasnoselskii fixed point theorem.
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1. Introduction

Boundary value problems (BVPs for short) of fourth-order ordinary differ-
ential equations arise from a variety of different areas of applied mathematics
and physics. Fourth-order two-point BVPs have received much attention from
many authors. One may see [1]-[3], [6], [7], [9]-[14] and the references therein
for related results. Recently, an increasing interest in studying the existence of
solutions and positive solutions for fourth-order four-point BVPs is observed;
see for example [4], [8] and [15]. In particular, the authors in [15] studied the
following fourth-order four-point BVP

u® (t) = f (tut),uw’ (t), 0<t<1,
u(0)=u(1) =0, (1)
au” (§1) — bu™ (&1) =0, cu” (§2) +du’ (§2) =0,
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where 0 < & < & <1, a,b, ¢, d are nonnegative constants, ad+bc+ac(és —&1) >
0, —a&14+b >0, ¢(§&2—1)+d > 0and f € C ([0,1] x [0,400) x (—00,0], [0, +00)).
The existence of at least one positive solution to the BVP (1) was proved by
using the Guo-Krasnoselskii fixed point theorem under the assumption that:
(1) f was superlinear, i.e., max fo = 0 and min f,. = +o00; or
(2) f was suberlinear, i.e., min fy = +00 and max f.. = 0, where -

o t,x
max fo = lim max sup ftzy) ,y),
~y—0* t€0.1] ye0,400) Y
t,x
min foo = lim min _inf M’
—y—+oote[0,1] 2€[0,40]  —Y
t
minfo— lm min e LG3Y
—y—07+ t€[0,1] z€[0,+00) -y
t
max fuo = lim  max  sup ftzy)
—y—+00t€0, ] 2e[0,400) Y

However, roughly speaking, these conditions imposed on f require that f (¢, z, y)
is bounded in x, which is a very strong assumption.

In this paper we will investigate the following more general fourth-order four-
point Sturm-Liouville BVP

u® () = f (tu(t),u” (t), 0<t <1,
au (0) — fu’ (0) = yu (1) +6u’ (1) = 0, (2)
au” (§1) — bu" (1) = cu” (§2) + du” (§2) = 0.

Throughout this paper, we always assume that 0 <& < & <1, ,8,7,4,a,b,¢,d
are nonnegative constants, p, := ay+ad+y8 > 0, p, := ad+bc+ac (&2 — &1) > 0,
—aé1+b>0, c(é2—1)+d>0and f € C([0,1] x [0,+00) X (—00,0], [0, +00)).
Define n, = & + % ((2 — &1) and g = & — % (&2 — &1) . By modifying the defini-
tions of max fy, min foo, min fo and max f, as follows:

¢ t
f®= limsup max M, foo = liminf - min f( ,a:,y)’
z+|y|—0+ telé1.62] T+ Iyl z+ly|—=+oo t€lm.m2] T + Iyl
. t, ) t
fO = lim inf min M’ foo — hm Sup' max f( y Ly y) ,
a+ly| =0+ telmmz] T+ |y 2|yl —+oo tElE1.E2] T+ [Y]

we obtain the existence of at least one positive solution for the BVP (2). Our
main tool is the following well-known Guo-Krasnoselskii fixed point theorem [5].

Theorem 1. Let X be a Banach space and K be a cone in X. Assume ) and
Qs are open subsets of X with 0 € Qy and Q1 C Q. Let

T:Kﬂ(ﬁg\ﬂl) — K
be a completely continuous operator such that either

(1) |Tul| < ||ull,Yu € K NOQy and ||Tul| > |[u,Yu € K N,
or
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(2) [|Tull > |||, Yu € KNI and | Tull < ||u|,Vu € K N oK.
Then T has a fized point in K N (Qg \ Ql) .

2. Preliminary lemmas

In this section, we give some lemmas which will be employed to obtain the
existence of positive solution for the BVP (2). Denote by G; (t,s) the Green
function of the BVP

-u”(t)=0, 0<t<1,

au (0) — Bu’ (0) = vyu (1) + éu’ (1) = 0.
Then it is well known that G; (¢, s) can be written as
1 [ (as+B)(y+0—t), 0<s<t<],
p, | (at+B)(y+d—7vs), 0<t<s< 1L

Let X = C[0,1]. Then (X, |-||) is a Banach Space, here ||-|| is defined as usual
by the sup norm. Set

Gi(t,s) =

R | et

K={veX|v(t)>0fortel01]} ansz{vEKlt r{nin ]v(t)z lvll}-
€in,m2

Then it is easy to know that K and P are cones in X. Now we define an integral
operator S: K — X by

(Sv) (t) = /0 Gy (t5)v(s)ds, t € [0,1]. (3)

It is obvious that
1 1 ,
— < =
50l = max [ Gr () v(s)ds < max [ Gr(ta)Iollds =T, (4

here I' = G (t :
where tren[(ai}f]fo G1(t,s)ds >0

Lemma 1. Ifv is a positive solution of the following BVP

V' (8) + f (£, (Sv) (¢),—v () =0, 0< <1, )
av (§1) = b’ (&1) = cv (§2) +dv' (&) = 0,

then u = Sv is a positive solution of the BVP (2).

Proof. Since the proof is easy, we omit it. 0

Now we denote by G2 (¢, s) the Green function of the BVP
" (t)=0,0<¢t<1,
av (§1) = bv' (§1) = cv (&2) +dv' (&) = 0.

It is well known that

G (t S)—i (a(8—€1)+b)(c(€2—t)+d)7 SSt; §1£3S52)
2T L (at—&)+b) (c(€a—s)+d), t<s, & <s< &

For G+ (t, s), we need the following results whose proof can be found in [15].
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Lemma 2. 0 < Gz (t,8) < Gz (s,s) for (t,s) € [0,1] x [£1,&) and G2 (s,s)
< Go (t,s) for (t,s) € [n1,m2] % [€1,&2]-

Define an operator T': P — X by

&
(Tv) (t) = . G2 (t,5) f (5, (Sv) (s), —v (s)) ds, t € [0,1]. (6)

Obviously, if v is a fixed point of T in P, then v is a positive solution of the
BVP (5).

Lemma 3. T : P — P is completely continuous.

Proof. Let v € P. Then it follows form Lemma 2 that

2
0< (Tv)(t) = Go (t,8) f(s,(Sv) (s),—v(s))ds
&1
&2
< G2 (s,8) f (s, (Sv) (s),—v(s)) ds, t € [0,1],
&1
and so,
&2
”TU” < ¢ G2 (37 S) f (37 (SU) (S) y U (S)) dS,
which together with Lemma 2 implies that
&2
min (Tv)(t) = min G2 (t,s) f (s, (Sv) (s),—v(s))ds
t€[n1,m2] t€lm,mz] Jg, .
&2 ‘
> G G269 (5 (50 (), ~v ) ds
1
> 2Tl

which shows that T (P) C P. Furthermore, it is easy to prove that T : P — P
is completely continuous by an application of the Arzela-Ascoli theorem. O

3. Main results

Theorem 2. Suppose that f is superlinear, i.e., f© = 0 and fo, = +00. Then
the BVP (2) has at least one positive solution.

Proof. Since f° = 0, we may choose h; > 0 so that
f(tzy) <e(z+|yl) fort €[61,&] and (z+|y]) € [0,h4], (7)

where € > 0 satisfies

2
6(1+F)/g Gy (s,s)ds < 1. (8)



Positive solution for fourth-order four-point Sfurm-Liouville BVP 683

Let Q; = {v € X||lv|| < & } Then for any v € P N 984, it follows from

Lemma 2, (4), (7) and (8) tha
(Tv) (1) = gszz(t,S)f(s,(Sv) (), ~v(s)) ds
< f Ga (5,5) f (5, (Sv) (5) , ~v (s)) ds
< e :2 G2 (5,5) ((50) (5) + |0 (5)]) ds
< e(1+D) f G2 (s,9) o]l ds,

< v, t€lo,1],
which shows that

|Tv|| < |jv]| for v e PN oQ. (9)
On the other hand, since f., = +o00, there exists ho > ﬁ% such that
1
f(t,z,y) > € (z+y|) fort € [n1,me) and (z+|y]) € [Zhg, +oo) : (10)
where €* > 0 satisfies
1 2
—e*/ Ga(m,s)ds > 1. (11)
4 m
Let Q2 = {v € X|||v|| < h2}. Then for any v € P N dQo, tex[nin ]v(t) > 2|l =
71,712
1hs. In view of (10) and (11), we have
&2
(Tv) (m) = G2 (m1,8) f (s, (Sv) (s), —v(s)) ds
&1
n2
> G2 (nlas)f(57 (S’U) (S),—’U (S))ds
m

> ¢ [ Galms) (59) (9)+ |- (o)) ds

1

n2
€ G2 (m, 8) |~v (s)| ds,

>
m
1 n2
> 3¢ [ Galn,9) vl ds
m '
> ol

which implies that
|Tv|| > ||v]| for v € PN oNs. (12)
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Therefore, it follows from (9), (12) and Theorem 1 that the operator T has one
fixed point v € PN (O \ 1), which means that the BVP (2) has at least one
positive solution. O

Theorem 3. Suppose that f is sublinear, i.e., fo =400 and f> = 0. Then
the BVP (2) has at least one positive solution.

Proof. Since fo = +00, there exists hg > 0 such that
f(tzy) 2 e(x+|yl) fort € [nm,n2] and (z+ |y]) € [0, ha], (13)

where € > (O satisfies

1 72
—-e/ Ga(m,s)ds > 1. (14)
4 m

Let €13 = {v e X||v|| < —h3—} . Then for any v € P N 083, in view of (13) and

1+T
(14), we have

&2
(Tv)(m) = A G2 (m,s) f (s, (Sv) (s), —v(s))ds
2
> G2 (771,3)f(3, (S’U) (S) y — U (S))ds
m
2
=z €[ Ga(m,s)((Sv)(s)+[-v(s)[)ds
et
> e[ Gz(m,s)|-v(s)|ds,
7
1 1 2
> e[ Galm9)lolds
m
= vl
which implies that
|Tv|| > ||v|| for v e PN oQs. (15)
On the other hand, since f*° = 0, we may choose M > 0 so that
ftzy) <€ (z+]yl) fort € [61,&2] and (z + |y]) € [M, +00), (16)
where €* > ( satisfies
&2
e (1+71) Gs (s,8)ds < % (17)
&1

Let
M* =max{f (t,z,y): t € [€1,&], z € [0, M] and y € [-M,0]}.
Then it is easy to see that

ftz,y) <e(z+yl)+ M fort € [£1,&], x € [0, +00) and y € (—00,0].
(18)
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Set

&2

h3
* ds . 19
h4>max{1+r,2M . G2 (s, 8) s} (19)

Let Q4 = {v € X|||v]| < hsg}. Then for any v € PN O, by Lemma 2, (4), (17),
(18) and (19), we know that

&2 :
(Tv)(t) = A Gz (t, ) f (s, (Sv) (s), —v (s))ds

&2

< : G2 (s,s) f (s,(Sv) (s),—v(s))ds
&2

< A Ga(s,8)[e* (1 +T1)||v|]| + M*]ds

< 5ol hs

= ”UH , L€ [Oa 1]»

which shows that
|Tv]| < |lv|| forve PN oQy. (20)

Therefore, it follows from (15), (20) and Theorem 1 that the operator T has one
fixed point v € P N (€4 \ 3), which means that the BVP (2) has at least one
positive solution. O

4. An example

In this section, an example is given to illustrate the main results of this paper.

Example 1. Consider the BVP
u® (t) =t (u(t) —u"(t)?, 0<t <1,
u(0) = ' (0) =u(1) + Ju' (1) =, @
w (1) = b (3) = w () + dur (3) =0
Since f (t,z,y) = t(x — y)2 , a simple computation shows that f = 0 and

foo = +o00. It follows from Theorem 2 that the BVP (21) has at least one positive
solution.
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