A PRECONDITIONER FOR THE NORMAL EQUATIONS

  • Received : 2008.03.22
  • Accepted : 2010.01.28
  • Published : 2010.05.30

Abstract

In this paper, an algorithm for computing the sparse approximate inverse factor of matrix $A^{T}\;A$, where A is an $m\;{\times}\;n$ matrix with $m\;{\geq}\;n$ and rank(A) = n, is proposed. The computation of the inverse factor are done without computing the matrix $A^{T}\;A$. The computed sparse approximate inverse factor is applied as a preconditioner for solving normal equations in conjunction with the CGNR algorithm. Some numerical experiments on test matrices are presented to show the efficiency of the method. A comparison with some available methods is also included.

Keywords

References

  1. O. Axelsson, Iterative solution methods, Cambridge University Press, Cambridge, 1996.
  2. M. Benzi, Preconditioning techniques for large linear systems: A survey, J. of Computational Physics 182 (2002), 418-477. https://doi.org/10.1006/jcph.2002.7176
  3. M. Benzi and M. Tuma, A comparative study of sparse approximate inverse preconditioners, Appl. Numer. Math. 30 (1999), 305-340. https://doi.org/10.1016/S0168-9274(98)00118-4
  4. M. Benzi and M. Tuma, A robust preconditioner with low memory requirements for large sparse least squares problems, SIAM J. Sci. Comput. 25 (2003), 499-512. https://doi.org/10.1137/S106482750240649X
  5. M. Benzi and M. Tuma, A robust incomplete factorization preconditioner for positive definite matrices, Numer. Linear Algebra Appl. 10 (2003), 385-400. https://doi.org/10.1002/nla.320
  6. A. Bjorck, Numerical methods for least squares problems, SIAM, Philadelphia, 1996.
  7. B. N. Datta, Numerical linear algebra and applications, Pacific Grove, CA: Brooks/Cole Publishing Company, 1995.
  8. T. Davis, University of Florida Sparse Matrix Collection, http://www.cise.ufl.edu/-davis/sparse/, 2008.
  9. A. Jennings and M. A. Ajiz, Incomplete methods for saving $A^{T}$ Ax = b, SIAM J. Sci. Stat. Comput. 5 (1984), 978-987. https://doi.org/10.1137/0905067
  10. National Institute of Standards, Matrix Market, http://math.nist.gov/MatrixMarket, 2008.
  11. Y. Saad, Iterative Methods for Sparse linear Systems, PWS press, New York, 1995.
  12. M. Tismenetsky, Anew preconditioning technique for solving large sparse linear systems, Linear Algebra Appl. 154/156 (1991), 331-353. https://doi.org/10.1016/0024-3795(91)90383-8