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SINGULAR THIRD-ORDER 3-POINT BOUNDARY VALUE
PROBLEMS

ALEX P. PALAMIDES*

ABSTRACT. In this paper, we prove existence of infinitely many positive
and concave solutions , by means of a simple approach, to 3t* order three-
point singular boundary value problem

() =a(t) ft,zt), 0<t<l,
c(Q)=2'(m=2"(1)=0, (1/2<n<1).

Moreover with respect to multiplicity of solutions, we don’t assume any
monotonicity on the nonlinearity. .

We rely on a combination of the analysis of the corresponding vector
field on the phase-space along with Knesser’s type properties of the solu-
tions funnel and the well-known Krasnosel’skii’s fixed point theorem. The
later is applied on a new very simple cone K, just on the plane R2. These ‘
extensions justify the efficiency of our new approach compared to the com-
monly used one, where the cone K C C([0,1],R) and the existence of a
positive Green’s function is a necessity.
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ondary 34B15, 34G20. ‘

Key word and phrases : Three point singular boundary value problem; third
order differential equation; positive solution; vector field; Krasnosel’skii’s
fixed point theorem.

1. Introduction

Ma in [17] and latter Webb (21}, Kaufmann [12] and Kaufmann and Raf-
foul [13] proved the existence of a positive solution to the three-point nonlinear
boundary-value problem

—u"(t) = ¢(t) f(u(t)), 0<t<1,
uw(0) =0, au(n) =u(l),
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where o > 0, 0 <7 < 1 and an < 1. Liu (16] applied a fixed point index method
to obtain an interval for the parameter )\, where existence results for

—u(t) = Ag(t)a(t) f(u(t)), 0<t<1,
u'(0) =0, PBu(n) =u(l)

are guaranteed.

In the above papers there are no assumptions for singularity of the nonlilearity
f at the point u = 0. Zhang and Wang [24] and recently Liu [15] obtained some
existence results for a singular nonlinear second order 3-point boundary-value
problem, where singularity only of ¢(t) at ¢t = 0 or t = 1 is permitted. Also
recently, using the method of fixed point index, Xu [22] studied the problem

—u’(t) = f(u(t)), O0<t<l, u(0)=0, oau(n)=u(l),

where f(t,u) is allowed to have singularity at v = 0. Other applications of
Krasnosel’skii’s fixed point theorem to semipositone problems can, for example,
be found in [2]. Further recently interesting results have been proved in [11],
[21] or [15].

Anderson [4] and Anderson and Avery [3], proved that there exist at least
three positive solutions to the BVP (1) (below) and the analogous discrete one
respectively, by using the Leggett-Williams fixed point theorem. In addition
Anderson and Davis [5], Yao in [23] and Haiyan and Liu in [10], using the
Krasnosel’skil’s fixed point theorem or its extensions showed the existence of
multiple solutions to the BVP (1). More similar results can be found in Du et
all in 7] and also in Feng and Webb work in [8].

Recently, Du et all [6] via the coincidence degree of Mawhin, proved existence
for the BVP

3@ = fat), 5 (), 2" (), 0<t<],
z(0) =az (), 2" (0) =0, «' (1) = 75" B (n;),

at the resonance case. Also in an recent paper, Yongping Sun [20] obtained
existence of infinitely many positive solutions to the BVP

{ u () = A (t) f(tu(t), 0<t<1, W
w(0) = () = v’ (1) =0, n € (1/2,1)

mainly under sub or superlinearity on the nonlinearity f of the type

There exist positive constants 8, R # r such that
ftz) <55, V() €[0,1] x[0,r];.
ft,z)> &, V() e€[0,1] x [0R,R],

where A and B are constants.

Sun, in order to obtain his existence results applied the classical Krasnosel’skii
fixed-point theorem on cone expansion-compression type. Furthermore Sun, in
order to prove his multiplicity results, assumed monotonicity of the nonlinearity
with respect to the second variable.
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In [18] and in several references therein, Palamides and Erbe obtained exis-
tence results of a monotone positive solution of the singular boundary value
problem

(0 () + sign(1 = a)a(0)1 (6 (2) P () = O,
{ YY(0) £ 6 lims—o4 p(t)y'(t) = 0,
lim;—1- p(t)y'(t) — alim;—o4 p(¢)y'(t) = 0.
Their approach was based on an analysis of the corresponding vector field on
the phase-plane along with the shooting technique.

In this work, mainly motivated by the above mentioned papers, especially the
ones of Sun [20] and Palamides and Erbe [18], we suppose a sublinearity-type
growth rate on f(¢,u) at both the origin v = 0 and u = +00. The emphasis in
this paper is mainly to use as our basis the continuum properties (connectedness
and compactness) of the solution funnel (Knesser’s theorem), combined with the
corresponding vector field’s ones. Then the classical Krasnosel’skil’s fixed point
theorem is applied just on the two-dimensional Euclidean space. This results in
the use of quite similar natural assumptions. Furthermore, we eliminate at all
the related monotonicity assumption on the nonlinearity in [20]. In this way,
we prove existence of infinitely many positive solutions for the boundary value
problem

z (t)y =) F(tz(t), 0<t<l,
{ z(0)=12'(n) =2"(1) =0. (E)

In addition, we don’t use the corresponding Green’s function, the needed pos-
itivity of which implies the usual restriction n € (1/2,1). This is clearly an
advantage of our approach. For example, if the boundary conditions in (E) were

z(0) =z (1) =2"(n) =0,

then the corresponding Green’s function is not positive. This causes many dif-
ficulties to obtain a positive solution, via the commonly used approach (see for
example [19]). Moreover the construction of the Green’s kernel to another type
of BVP may be difficult or even impossible.

2. Preliminaries

Consider the third-order nonlinear singular boundary value problem (E),
where we assume within this paper that n € (1/2,1) and the continuous func-
tions a(t), t € (0,1) and F € C(Q,[0,400)) are nonnegative,where Q0 =
[0, 1] x [0, +00).

Then a vector field is defined, with crucial properties for our study. More
precisely, considering the (z’,z’') phase semi-plane (z/ > 0), we easily check
that "' = a (t) F(t,z) > 0. Thus, any trajectory (z(t), 2" (t)), t > 0, emanating
from any point in the second quadrant:
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{(z',2"): 2" >0, 2" <0},

evolves in a natural way, when z'(¢) > 0, toward the negative x"'—semi-axis
and then, when z'(t) < 0 toward the negative z’—semi-axis. Thus, assuming a
certain growth rate on f (e.g. a sublinearity), we can control the vector field in
a way that assures the existence of a trajectory satisfying the given boundary
conditions. These properties, which will be referred to as “the nature of the
vector field 7, combined with the Krasnosel’skii’s theorem, are the main tools
that we will employ in our study.

-
~—
et
~

(u'(t),uk

Fig. 1

More precisely we will apply the well known Krasnosel’skii’s fixed point the-
orem in cones (see [9]):

Lemma 1. Let E be a Banach space and K* C E a cone in E. Assume that
1 and Q2 are open subsets of E with 0 € ) and §2; C §lo. Let

T:K*N(Q:\) — K*
be a completely continuous operator. We assume furthermore

(A) ||Tul|] < |lu||, Yu e K*No and |[Tu|| > ||ull, Yu € K* NI or
(BY ||Tul] > |Jull, Yu e K*NOQ2 and ||Tul| < ||u||, Yue K*NoQ.

Then T has a fiwed point in K* N (Q2\Q) .
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3. Existence Results.

Consider the third-order nonlinear singular three-point boundary value prob-
lem:

vo=a(t) fltu), 0<t<l, (2)
u(0)=4'(n)=u"(1) =0. (3)

where f is a continuous extension of F) i.e.

[ F(u), u=>0
f(t’“)_{ F(t,0), u < 0.

Considering the sign property of F, we conclude that
f(t,u) >0, (tu)el0,1] xR
Lemma 2. Assume that a solution u = u(t) of a BVP (2)-(8) satisfies the
inequalities
W (t)>0,0<t<nand v (t)<0, 0<t<1l.

Then
u(t) >0, 0<t<1,

provided that n € (%, 1) .
Proof. Suppose that there is a T' € (7, 1) such that
w(t)>0, t€(0,T), u(T)=0and u(t) <0, ¢ € (T, 1].
Consider, two symmetric, with respect to n, partitions
{2n—T=ro<r<..<ry=7m} and {p=to<t1<..<ty=T}
of [2n — T, n] and [n', T respectively, i.e.
Tk —Tk—1 =11 — %0, The1 —Th—2 =12 —t1,..., T1 —To =t — ty_1.

Notice firth that 2n— T > 0. By the concavity of u = u (¢) and since the map
u=u"(t), t €[0,1], is nondecreasing and negative,

W (i) > = (bri), (E=0,1,..,k—1).
Thus
—(tk—it1 — te—i)u (tk—i) < (rig1 —r)u/ (r3), (i=1,2,...,k),
that is

- Z(tk i+1 — Le— z)u tk < Z(TH-l - Tz)u (TZ) (4)

In addition, because the map v’ = «/(t), 0 < r < T is continuous (and
bounded), we can choose the max{r; —r;_1 :7=1,2,...,k} small enough, and
provided that 2n — T' > 0, we obtain

/Onu'(t)dtZ/:_Tu’(t)dt> —/Tu'(r)dr.
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Consequently,
n T
u(T) =/ v’ (¢) dt+/ u' (r)dr > 0,
0 7

a contradiction. J

Remark 1. : The restrictionn € ( %, 1) 1s necessary for the validity of the above
Lemma 2. The next counter example is due to the Referee: For n = 1/3 and
f(t,w) = 1, the function u(t) = (t/6) — (¢*/2) + (5t/18) is a solution of the
BVP (2)-(8), which satisfies the assumptions of Lemma. Butu (1) = —1/18 < 0.

Lemma 3. Letu =u(t), t € [0,1] be a solution of the differential equation (2)
such that
©(0)=0, v (0)=uy >0 and u”(0)=uj <O. (5)
Then
u(t) >0, te0,1]
for any initial value (uf), uy) with vy > —2uj).
Proof. By Taylor’s formula
7 t? " t° ' 2
u (t) = tug + JU T g (1 —s)”" a(st) flst,u(ts)lds, t €[0,1].
0
and (5), we get u (t) > 0 for all ¢ in a (right) neighborhood of ¢ = 0. Assuming
that there exists a t* € (0, 1) such that
u(t*)=0 and u(t) >0, te]0,¢],
and provided that ug > —2ug, we get, noticing the sign of the nonlinearity
* /
t—(2u3+t*ug’) <0 & t'> —-2—"# > 1,
2 Ug
a contradiction. |

Throughout this paper, we assume that 0 < § < 1/2 and there exist positive
constants r¢g and Ry with

RO S To S _R_Q’
n
such that, for any
R
F(t,z)> Z‘l (t,z) € [0,1] x [0, ro] (A1)
5 :
and vice verstra there exists an R > Ry such that
F(t,a)< 5 (ta) € [0,1] x [RY, +00). (A2)
0

where

1 1-6
Aoz/ a(s)ds >0 and Boz/ a(s)ds > 0.
0 0
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Proposition 4. For every initial value (ug, ug), with

1 2
uy < —ro +0

IN

< -1 < —u{),

any solution u = u (t) of the initial value problem (2)-(5) satisfies
u'(n) >0, v (1)>0 and u(t) >0, te€l0,1].
Proof. We choose (without loss of generality)
- R
wh=ro and ul =-—2 (6)

and assume that u” (1) < 0. By the sign property of f, it follows that u'” (t) > 0.
Thus, the function u” (t), t € [0,1], is increasing. Hence, by the Mean Value
Theorem,

u’ (t) = ug + t* fta(s) fls,u(s)]ds <0, 0<t < 1.
0

Since the derivative u’ (¢), 0 _é t < 1, is nonincreasing, we obtain v/(t) < ug, 0 <
t <1, and so u(t) < tup < ug =ro, t €[0,1). Hence, in view of the'assumption
(A1), we obtain the contradiction 0 > u”(1) > ug + Ro > ug + ~Q = 0.

On the other hand, if we assume that v’ (n) < 0, there is a t* € (0,7n) such
that v’ (t*) = 0. Again by Taylor’s formula and the sign of nonlinearity:

0 = o (t*)=u6+t*u6’+/ & — 5) a(s) fls, u (s)]ds

x 1

> u0+tu0>u0+7]u0—7‘0—R020,

a contradiction. J

Lemma 5. Consider a function y € C®)[(0,1),[0,+00)] such that
y(0)=0, v(0)>0 and y'(0) <0 and
y" () 20,0<t<1, ¥ (n) <0 and y'(1) <0

Then

> .
oun 4y (8) 2 Ollyll

Proof. Since y'” (t) > 0, the function y” (¢) is nondecreasmg So noticing that
y” (1) < 0, this implies that

y'(t) <0,0<t<1.
Now by the concavity of y (¢), for any u, t1 and t3 in [0, 1], we have
y(ptr + (1= p)t2) > py (t1) + (L — p)y (t2) .

Also by the assumption y' () < 0, there is a t* € (0, n) such that ¥’ (¢*) = 0 and
llyl| = y (t*) . Therefore

t 1-—t
> — > _
y(t) 2 [lyll , min 9{t*,1_t*}_|lyllg<mt<1§1 {t,1—t} =9|lyll.
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We recall choices (6) and 7y < -I%Q and fix the obtained initial point K =

(ug, ugy). Consider furthermore the simplex S = [K, A, B], where the vertices

A = (v4,ug) and B = (ug,0) are chosen so that

R *
u'y +uf =n 'Ry, e U= —%Rl,
and u} will be defined latter (above of Proposition 7).

Proposition 6. Any solution u = u (t) of (2) emanating from the initial point
A = (uy,uy) (we will denote such a choice by u € X (A)) satisfies

[lu|| > R} and u"(1)<0.
Proof. We will first show that
o' () >n" 'R}, 0<t<1,

If not, proceeding as in the proof of Proposition 4, we have u’ (t*) = n~!R} for
some t* € (0,1], and w’ (¢t) > n~ 'R}, t € (0,t*). Then we get the contradiction
1
u(t*) = uy+tTuy+ t*2/ (1 —s)a(st") flst*,u(st")]ds

0
> oy +uy =n"'R}.
Hence, given that v’ (t) < u/y, 0 <t <1, we obtain

Ri+R:

n IR} </ (t) < and u(t)>0, 0<t<1

and this yields
1
ul| = u (1) = / W (s)ds > 7~ R} > RI.
0

Assuming now that u’ (1) > 0,we have v” (t*) = 0 and " (¢) < 0, ¢t € (0,1).
Hence, the map u =u (t), 0 <t < t*, is concave and thus, by Lemma 5,

min{u(t): § <t <min{l —6,t"}} > 0R;].

However, in view of the assumption (A2) and since ry < %Q, we obtain
t*
u’ () = uf)'-l—/ a(s) fs,u(s)]ds < ug + t*rg <0,
0

a contradiction. |

Remark 2. By Propositions 4 and 6, there always exists a point P; € [K, A]
such that v’ (t) <0, 0<t<1land v (1)=0, ue X(P).
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Let us now denote
L =max{f (t,u): (t,u) €[0,1] x [0,70]} .

For any ¢ > 0 (fixed) we set ug = mln{—%l —Amm(L +¢), fLAO} and con-
sider the point '
B = (7‘0, u’é) .

Proposition 7. The derwative of every solution u = wu(t) of (2) emanating
from any initial point B satisfies

v (n) <0, and u"” (1) <0.
Proof. Assuming to the contrary that u” (1) > 0, we obtain a point t* € (0, 1)
such that , :
u' (#) <0, 0<t<t* and v’ (") =0
Since the derivative v’ () < 0, 0 < ¢t < t*, is nonincreasing, we obtain u’ (¢) <
ug, 0 <t < t*.Thus u(t) <tuj < uy=ry, 0 <t <t* By the modification f of
the nonlinearity F (¢, u), it follows that its argument v = u () >0, 0 <t < L.
Hence, the choice of u/;, implies that

t*

u"'(t*)=u}’3+f: a(s) fls,u(s)]ds < u +L/ a(s)ds < u% + LAy <0,

a contradiction. This yields the second required result u” (1) < 0.
Furthermore we may show, similarly to the proof of Proposition 4, that u (t) <
tuo <wuy=r1g 0<t< 1] Hence, by Taylor’s formula and the above choice of

UB,
) |
u(n) = u6+7zu%+n2/0 (1= s) a(sm) flsm, u (sm)]ds

1
< u6+nuj§+n2L/0 (1-s)a(sn)ds < 0.
|

Remark 3. By Propositions 4 and 7, there always exist points Py, Py € K, B]
such that ‘

u' (8) >0, t€(0,m) and v (n) =0, ue X (P})
and .

u"(t) <0, t€[0,1) and v (1)=0, ue X (P}).

Let Py = (up,uy) be a point in the face [K, B] such that v’ (n) = 0, for some
solution u = u (t) emanating from the initial point P;. We will denote the latter
choice by u € X (P1). Assuming first that u” (1) > 0, consider the cone

K*={(v,v")eR?*: v' >0, v’ <0}

in R? and define the sets (recalling the notatlon S = [K, A, B] for the triangle,
(see Figure) '
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Q - { ] P=(@j,u/)eK*:P+KeS, }
v (t)>0,0<t<n v(n)>0 u(1)>0, Yue X (P+K)

€1 = {P=(uj,u)e: ' (n)=0 and v/ (1) >0, ue X (P+K) }.

and

Q = {P=@puf)eK*: :P+KeS u'(1)>0, Vue X (P+K)}

Cy = {PeQ:u"(t)<0,te0,1), v'(1)=0, ueX(P+K)},

where we recall once again that
’ ' R
K = (uj,ug) = (ro, —@) andP, + K = (ro + uj, —-—ﬁq + u'{) .
n

Similarly whenever v’ (n) = 0 implies v” (1) < 0, u € X (P1), we define the
sets

O = o P=(@j,ul)e K*:P+K €8S,
b u’(t)>0,0<t<1 and v'(n) >0, veX(P+K)
C; = {PeQ: v (1)=0 and u’(n)ZOZ,uEX(P+K)}.
and |
Q= P=@ju))eK*: :P+KEeS,
27 W ({#)>0,0<t<n, ueX(P+K)

C; = {Pe®:v/(n)=0, ueX(P+K)}.

Remark 4. By Remark 3, C; # @, i = 1.2, and cl (Q2\Q1) # @. The latter is
a compact set, whenever C1 NCy = .

Theorem 8. Under assumptions (A1) and (Az), the boundary value problem
(E) admits at least one positive and concave solution.

Proof. We notice first that, if C; N Cy # @, the BVP (2)-(3) clearly accepts a
solution. Thus we assume C; N Cy = @. Since the set cl (Q2\1) is compact, by
the upper continuity of solutions with respect to their initial values (Knesser’s
property of the solutions funnel),

Ci =0 and C=09;, (1=12),
the set |
{u" (1) :ued(Q\N)} |
is also compact and £25\; # &. Therefore a constant u > 0 exists, such that
pu” (1) < —u" (0), Vu € cl (22\Q) - (7)
Now for any point P = (u},u}), we deﬁne the map

T:cl(Q\) = K*, T(P)=(—v'(n)+uj,pu” (1) +uf),
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where the solution u = u (t) has its initial value at the point P + K, i.e. u €
X (P + K) . The map T is well defined, that is T (P) € K*, since P € cl (£22\(1)
implies that v/ (n) <0, v’ (1) > 0 and furthermore (7) stands true.
Similarly, if P € C}, noticing that v (1) = 0 and u’ (n) = 0, we obtain
1T (P) ]| =] —u (n) +wi| + |pu” (1) + uf| < |ui] + uf| = ||PI],
due to the facts that v’ (n) = 0 and since by (7) | .
|’ (1) +uf| < |uf] & —pu” (1) —uf < —uf & u"(1) 20,
where the last inequality is true by the definition of C1.
Similarly, if P € C5, noticing that v’ (n) <0 and v (1) = 0, we obtain
1T (P = 1= (n) + vl + |pu” (1) + ui] > Juy] + |ui| = [|P|].

Finally, by an application of Lemma 1, we obtain a fixed point of T in K* N
(Q22\21), that is a solution of the BVP (2)-(3). Consequently, by the nature
of the vector field and noticing Lemma 2, we get u (t) > 0, t € [0, 1], and this
means that © = u(t) is a positive solution of the original boundary value problem

(E).
We assume now that u’ () = 0, implies v’ (1) < 0. Assume again that C} N
C3 = @. Since the set ¢l ( 3\9*1‘) is compact, by continuity the set
{ (n): weX(c(B\2))}
is also compact. Therefore a constant pu > 0 exists, such that
pu'(n) < u'(0), Vue X (d(Q5\0Q7)). (8)
Now for any point P = (u}, uY), we define the map
T (@5\2) — K", T(P) = (—p () +ulyu” (1) +uf),
where the solution u = u (t) has its initial value at the point P + K, i.e. u €
X (P + K) . The map T is well defined, that is T (P) € K*, since P € cl (Q3\Q})
implies that «"” (0) < 0, u” (1) < 0 and furthermore (8) stands true.
Considering now a point P € C§, we have
IT(P) || = | = pu’ (m) + wi| + |u” (1) + uf| < |ui] + [uf] = [|P]],
because u” (1) =0, and since by (8)
| = pu () +ui] < Juy| & —pu’ () +uy Suy o' (n) 20,
the last inequality being true, by the definition of C7.
Similarly, if P € C, we obtain
IT(P) || = | = pu' (n) + ug| + |u” (1) + uf| > |ug| + [uf] = || Pl

given that v’ (n) = 0 and both v (1) and uf are negative.

Hence, by another application of Lemma 1, we obtain a fixed point of the
map T in K* N (Q3\Q}), that is a solution of the BVP (2)-(3). Finally, noticing
again Lemma 2, we conclude that the obtained solution u = u(t) of (2) is also a
positive solution of equation in (E). H
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Corollary 9. Suppose that -
flt,z)

. . ) t,z
lim min =03>0 and lim max f (&, )
x—04+ 0<t<1 x —+20 0<t<1 X

Then, the BVP (2)-(3) has at least one positive solution.

=0.

Proof. Via the first assumption at = 0, there exists a positive Ry < 1 and
To € (Ro, %Q) such that

f(tvx) RO
= — <zx<
oDin — ,8>A0, 0<z<rg.

Therefore R
f(t) 2 22, (t2) €[0,1] x [0,7o],
410

that is the condition (A,) is fulfilled. Moreover, since limmaxo<:<1 f (¢, 2) =
0, for the above obtained rg, there exists an R} > Ry such that

f(t,z) < g—', (t,z) € [0,1] x [0R:, +00),
4]

and thus'the assumptioﬁ (As2) is also fulfilled. Hence, Theorem 8 guarantees the
result. i

4. Multiplicity Results

Theorem 10. Suppose that assumptions (A1) and (Az) hold true. Then, there
exists a sequence {u,} of bounded and positive solutions to the BVP (2)-(3).

Proof. By the nature of the vector field, for any u € & (B) we have v’ (n) < 0
and u” (1) < 0. Hence by the continuity of solutions upon their initial values, we
can find a sub-triangle

[K*, A*, B] C Int[K, A, B
with the face [K*, A*] parallel to [K, A] such that

v (n) <0 and v’ (1) <0, uweX(P), Pel[K*, A" B]. (9)
We set K* = (rp, @) and consider a new simplex [K71, A1, B1] with
K, = (7‘1,——%) , B1=(r1,up, ) and
o (BrE E)
- n n

(then, [K1, A1] is parallel to [K, A]) under the choice

Al

: R
r1 € (0,70), ujél = min{_rm—l — Ao (Ll +éen), —LlB} and —71 > 4y,

where now - |
Ly =max{f (t,u): (¢t,u) € [0,1] x [0,71]} < L.
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In view of assumptions (A; ) and (As ), we may apply once again the Kras-
nosel’skii’s theorem on the triangle [K1, A1, Bi], in order to obtain another pos-
itive solution u = u; (t) of the BVP (2)-(3). By the construction of the triangle
[K1, A1, Bi] and (9), it is obvious that u = u (t) is different than the solution
u=u(t), 0<t<1, obtained at Theorem 8.

If we continue thls procedure, choosing the sequence {r,} such that limr, =
lime,, = 0, we may easily obtain a sequence {uy,} of solutions to the BVP (2)-(3).
Furthermore, since ! (¢t) <0, 0 <t <1,

R,+ R,y

Uy, (t)=u;(0)+/0 " (s)ds < o', (0) = :

Consequently, given that {R,} is decreasing, the sequence {u,} is a bounded
one. i :

5. Discussion

Assuming that both functions «(t) and f(¢,z,y, z) are negative, we may
easily demonstrate similar existence and multiplicity results. Indeed, considering
the (z', z”") phase semi-plane (z’ < 0), we easily check that /" = a (t) f(t,z) <
0. Thus, any trajectory (z'(t),z”(t)), t > 0, emanating from any point in the
third quarter

{(',2") : 2’ <0, 2" > 0}
evolves in a natural way, when z'(t) < 0, toward the positive 2"’ —semi-axis and
then, (when z'(t) > 0) toward the positive 2’ —semi-axis. This results, under a
certain growth rate on f , that we can control the vector field, in a way that as-
sures the existence of a trajectory satisfying the given boundary conditions. We
notice that in present situation, the obtaining solution (z’ (¢),z"” (t)) is convex,
in contrast to the previous case, where it is concave (see Figure).

Furthermore we could easily get analogous results, for the case where the
nonlinearity is superlinear.
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