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EIGENVALUE PROBLEMS FOR SYSTEMS OF NONLINEAR
HIGHER ORDER BOUNDARY VALUE PROBLEMS

A KAMESWARA RAO* AND S. NAGESWARA RAO

ABSTRACT. Values of the parameter X\ are determined for which there ex-
ist positive solutions of the system of boundary value problems, ulm 4+
Ap(t) f(v) = 0, v(™) + Xg(t)g(u) = 0, for t € [a,b], and satisfying, u(?) (a) =
0, u(a)(b) =0, v(i)(a) =0, v(a)(b) =0,for0<i<n—-2and1<a<n-—1
(but fixed). A well-known Guo-Krasnosel’skii fixed point theorem is ap-
plied. :
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1. Introduction

In this study we are concerned with determining values of A (eigenvalues)
for which there exist positive solutions for the system of n-th order differential
equations

ul™ (#)+Ap(8) f(v(8)) = 0, ¢ € [a, 8],
o™ (£)+q(t)g(u(t)) = 0, ¢ € [a,0],
satisfying the boundary conditions
uD(a) =0,0<i<n—-2, u0b) =0, (1<a<n—1, (butfixed),
v(a)=0,0<i<n-2, v¥B) =0,1<a<n —1 (but fixed), (g)

1)

where

(A1) f,g € C([0, ), [0,00)),
(A2) p,q € C([a,b],[0,00)), and each does not vamsh identically on any closed
subinterval of [a, b],
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(A3) All of
o S g(x)
fO T :1:1—19%14“ x ' go = :rlir%)l*‘ z
e () i 9(2)
foo 1= xlilgo ot and g := IILn;O o

exist as positive real numbers.

There has been much interest recently in this area of obtaining optimal eigen-
value intervals of boundary value problems, often using Krasnoselskii fixed point
theorems to obtain intervals based on positive solutions in side a cone. On a
larger scale, there has been a great deal of study focused on positive solutions
of boundary value problems for ordinary differential equations. Interest in such
solutions is high from a theoretical sense [8, 9, 12, 14, 20] and as applications for
which only positive solutions are meaningful [1, 9, 10, 16]. These considerations
are caste primarily for scalar problems, but good attention has been given to
boundary value problems for systems of differential equations [12, 13, 21, 22,
23]. ,
This paper is organized as follows. In Section 2, we state and prove some
lemmas which are needed in our main results. In Section 3, we establish a
criteria to determine eigenvalue intervals for which the boundary value problem
(1)-(2) has at least one positive solution, by using Krasnosel’skii fixed point
theorem. In Section 4, as an application we give examples to demonstrate our
results.

2. Green’s function and bounds

In this section, we construct the Green’s function and estimate the bounds
of the Green’s function for the homogeneous two point boundary value problem
corresponding to (1)-(2).

Let G(t, s) be the Green’s function for the boundary value problem
_y(n) =0,
yP(a) =0, 0<i<n-2, | (3)
@) =0, 1<a<n-—1, but fixed.

By using Cauchy function concept we construct the G (t,s) as

_ A\l o yn—a-—1
(t(n(i)l)!(b(ﬁa)sz—aq ) a<t<s<hb,
G(t,s) = o @)
. . (t— )n—l(b_ )n—a—l (t— )n—l
(nil)!(b_afn—a—l — (ns_l)! , a<s<t<b..

Lemma 1. For (t,s) € [a,b] X [a, b], we have

G(t,s) <G(bys). o (9)
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Proof. Fora <t < s < b, we have ,
o \n—1¢p _ s\n—a—1 A \n—1 b— n-—o-—1
S Gt i U g It
(n = Db —a)r—a-1 (n—1)I(b—a)r—o-!
= G(b,s).
Similarly, for a < s <t < b, we have G(t, s) < G(b, s). Thus, we have
G(t,s) < G(b,s), for all (t,s) € [a,b] X [a,b].

U
Lemma 2. Let I = [3%t0 a43b) For (¢, 5) € I x [a, b], we have
G(t,s) > kG(b,s). (6)
Proof. The Green’s function G(t, s) for the BVP (3) is clearly shows that
G(t,s) > 0 on (a,b) x (a,b). (7)
Fora<t<s<bandtel, we have
Gt,s) [(t—a\"'_ 1
—_ = > .
G(b, s) b—a — 4n-1
Similarly, for a < s <t < band t € I we have
G(t,s)  (t—a)" Hb—s)" @t —(t—s)" 1 (b—a)" !
G(b,s) (b—a)""1(b—s)n—a=1 — (h—s)n=1(h— g)n—o-1
(t—a)" o7 b —s)" Y (t—a)* — (£ — 5)°]
- (b — a)n—l(b - S)n—a—l — (b _ S)n—l(b — a)n—a—l
1 /t—a\"?_ 1 [t—a\"! 1
== > = > -
a\b-a Ta\b—a T a4l
Therefore G(t,s) > kG(b, s), where
. I 1 ‘
~ = min {4n__1 ) =T } . (8)
O

We note that a pair (u(t), v(¢)) is a solution of the eigenvalue problem (1),
(2) if, and only if,

b b ‘
u(t) = A / G(t, s)p(s) f (/\ / G(S,T)Q(?")g(U(r))d?‘) ds, a <t <b,
where

b
v(t) = /\/ G(t, s)q(s)g(u(s))ds, a <t <hb.
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Values of A for which there are positive solutions (positive with respect to a
cone) of (1), (2) will be determined via applications of the following fixed point-
theorem, which is now commonly called the Guo-Krasnosel’skii fixed point the-
orem.

Theorem 1. Let X be a Banach space, and let X C K be a cone in X. Assume
that Q1 and Qo are open subsets of X with 0 € Q1 C Q) C o, and let

T:kN (ﬁz\ﬂl) — K

be a completely continuous operator such that, either

1) | Tu |<]| w ], v€ Ny, and | Tul|>]| w |, u€ NN, or
i) | Tu|>] v, ve kNI, and || Tu ||<|| v ||, v € kN INy.

Then T has a fized point in kN (Q2\Q1).

3. Positive solutions in a cone

In this section, we apply Theorem 1 to obtain solutions in a cone (that is,
positive solutions) of (1), (2).

For our construction, let X = {z : [a,b] — R} with supremum norm || z ||=
sup{| z(t) |: ¢ € [a,b]} and define a cone K C X by

K= {x € X | z(t) > 0 on [a,b], and rtrg}l:v(t) >z ||} :
For our first result, let 7 € [a, b] be defined by

max G(t,s)p(s)dsz/ G(T, s)p(s)ds,
t€la,d] Jser s€l '

and define positive numbers L; and Ls by

- -1 -1
L1:=maX{ v G(”'?s)p(s)dsfoojl ,["Y EIG(T,S)Q(S)dsgm} },

sel
b ~1
[ JR0 s)q(s)dsgo}

Theorem 2. Assume conditions (Al) — (A3) are satisfied. Then, for each A
satisfying

-1
3

(b
Ly : = min / G(b, s)p(s)dsfo

L1 < /\<L2, (9)

there exists a pair (u,v) satisfying (1), (2) such that u(z) > 0 and v(z) > 0 on
(a,b).
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Proof. Let X be as in (9), and let € > 0 be chosen such that

max {[v / Gl o)p(s)ds(f - e)] - [7 / Gl 9)a(s)ds(on = e>] } <A
1

)

b v b , .
Tu(t) := /\/ G(t,s)p(s)f </\/ G(s, r)q(r)g(u(r))dr) ds, u € k.

- b
, { / G (b, s)a(s)ds(go + ©)

b
A < min [/ G (b, s)p(s)ds(fo + €)

Define an integral operator T : kK — X by

(10)
By the remarks in Section 2, it suffices to exhibit fixed points of T in the cone
K.

First, from (A1), (A2), and (7), for u € &, Tu(t) > 0 on [a, b]. Also, for u € &,
we have from (5) that

b b
Tu(t) = A / G(t, s)p(s) f ()\ / G(s,r)q(r)g(u(r))dr) ds

b - b
<) [ 6o (A | st r)q(r)g(u(r))dr> ds,
and so
| Tu ||< /\/ G(b s)p(s)f < / G(s r)q r)g(u(r))d’r) ds.

Next, if u € K, we have from (6) and (10),

tel

minTu(t) = min \ / G(t, s)p(s)f ( / G(srq(r)g(u(r»dr) ds

> /\fy/ G(b, s)p(s)f ( / G(s, r)q(r)g(u(r))dr) ds
Y[ Tul . - |

Consequently, 7' : kK — k. In addition, standard arguments show that T is
completely continuous.
Now, from the definitions of fy and go, there exists an H; > 0 such that

f(z) < (fo+€)z and g(z) < (9o + €)z, 0 <z < Hi.
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Let u € k with || u ||= H;. First, from (5) and the choice of €, we have
b : b
A [ Gl nagtu(r)r <A [ (b riatg(utr)ar
b
<X [ 6.1)40) a0 + Oulr)ir

b
<\ / G (b, r)q(r)dr(go +€) || u |
<{l v ||= Hi.

As a consequence, in view of (6) and the choice of ¢, we obtain

b b
Tu(t) =\ [ Gt s)p(s)f <A / G(s,r)q<r)g<u<r))dr) ds

b b
<2 [ 6 st + 9 [ Gls,ma(r)glur)drds

< )\/b G(b, s)p(s)(fo +€)Hi1ds < Hy
=[lull.
So, || Tu |<|| u ||, for every u € k with || u |= H;. Hence if we set
M ={zeX|[]zl|<H},
then
| Tu ||<|| w ||, for u € kN OQ;. (11)

Next, by the definitions of foo and g, there exists an Hy > 0 such that

f(IB) > (foo —€) and g(:c) > (goo — 6)37, z 2 EQ-
. H
Let Hy = max {2H1, 72} Then, for u € k and || u ||= Ha,
i > > Hs.
- minu(t) 27 | w2 H2

Consequently, from (6) and the choice of ¢, we find

r

b
' /\/‘ G(s,r)a(r)g(u(r))dr = /\/GI G(s,r)q(r)g(u(r))dr

> A / _ Glrrar)g(u(r))dr
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> X[ G(r,7r)q(r)(geo — €)u(r)dr
rel

A [ G(rr)a(r)(gee — €)dr || u ||
rel

2 |ul=Ha.

And so, we have from (6) and the choice of ¢,

(\Y

b b
Tu(t) = /\/ G(r,s)p(s)f (A/ G(s, r)q(r)g(u(r))dr) ds
b b
> / G(r,)p(s) (fow = O [ Gls,r)alr)g(u(r))drds

b
> A / G(7, 5)p(s) (foo — €) Hads

> vH>
>Hy=|ul.
Hence, || Tu ||>]| v ||. So if we set Qo = {z € X | || z ||< Hz2}, then

| T ||>]| ||, for u € &k NAN,. (12)

In view of (11) and (12), applying Theorem 1, we obtain that T has a fixed
point u € &k N (Q2\Q;). As such, and with v defined by

b
u(t) = A / G(t, 5)a(s)g(u(s))ds,

the pair (u,v) is a desired solution of (1), (2) for the given A. This completes
the proof. a

Prior to our next result, we introduce another hypothesis. (A44) ¢g(0) = 0, and
f is an increasing function.
We now define positive numbers L3 and L4 by

_ -1 -1
Ls:= ma,x{ v G(r, s)p(s)dsfo} , {'y o G(r, S)Q(S)dsgo] };

sel

- -1 b -1
Ly:= min{ / G(b, s)p(s)dsfoo} ) [/ G(b, s)q(s)dsgoo] } .

Theorem 3. Assume conditions (Al) — (A4) are satisfied. Then, for each A
satisfying

Lz < A< Ly, - (13)

there exists a pair (u,v) satisfying (1), (2) such that u(z) > 0 and v(z) > 0 on
(a,b). ,
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Proof. Let A be as in (13), and let € > 0 be chosen such that

—1 1-1
max { [7 G(r, s)p(s)ds(fo — e)} , [v G(r, s)a(s)ds(go <) } <)
sel sel i

- b ’ 171
[ / G(b, s)a(s)ds(goo + €) }

Let T be the cone preserving, completely continuous operator defined by (10).
By the definitions of fy and gg, there exists an H; > 0 such that

f(x) > (fo—€)r and g(z) > (go — €)z, 0 <z < H;

Also, from the definition of gy it follows that g(0) = 0, and so there exists
0 < Hy < Hj such that

b
A< min{ {/ G(b, 5)p(s)ds(foo +€)

M(z) < — il , 0< z < Hy.
J, G(b,s)g(s)ds

Let u € k with || u ||= Hz. Then,

f G(s T q(r)Hldr
f G(b, s)q(s)ds

=
A / G(s, r)a(r)g(u(r))dr <
Then,

Tu(r) = fG(T,s)p(s (/G(s r)q(r)g(u(r))d’r) ds

>x [ G s)p(s)(fo — A / G(s, r)a(r)g(u(r))drds
sel a

22X [ G(ns)p(s)(fo—e)A [ G(r,r)q(r)g(u(r))drds

sel - rel

>XA [ Graps)(fo— M [ Grr)ar)(go —€) || u || drds

sel rel

22X [ G(r,s)p(s)(fo—€) [l ull ds
s€rl

22X [ G(ns)p(s)(fo—e) [lullds
sel .

2wl
So, || Tu ||>]| w ||. If we put Q1 ={z € X || z | < Hz}, then )
| Tu ||=]| w ||, for e xnoQ;. (14)
Next, by the definitions of fo, and g, there exists an H such that
f(z) < (foo + €)z and g(z) < (goo + €)z, > Hy

There are two cases: (i) ¢ is bounded, and (i) g is unbounded.
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For case (i), suppose N > 0 is such that g(z) < N for all 0 < z < co. Then,
fora < s <band u € &,

b b
/\/ G(s,r)q(r)g(u(r))dr < N)\/ G(b,r)q(r)dr.

b
M = max{f(x) |0<z < N)\/ G(b, r)q(r)dr} ,
and let
b
Hj > max {2H2, M)\/ G(b, s)p(s)ds}.

Then, for u € k with || u ||= Hs,

b
Tu(t) < )\/ G(b, s)p(s)Mds

<H=lu]
so that || Tu ||[<||u . f Qs ={z € X | || z ||< Hs}, then
| Tu ||<]| u ||, for u € kN ONa. (15)

For case (i), there exists H3 > max{2H,, H;} such that g(z) < g(H3), for
0 < x < Hj. Similarly, there exists Hy > max{Hg,)\f; G(b,r)q(r)g(Hs)dr}
such that f(z) < f(Hy), for 0 < z < Hy. Choosing u € k with || u |= Hy, we
have by (A4) that '

b b
Tu(t) <A / G(t,s)p(s)f </\ / G(b, r)q(r)g(Hs)d’r) ds
b |
<A / G(t, 5)p(s) f(Hy)ds

, |
<2 [ 6o sIp()ds(fo + ) Hy
< Hy=[l ul,
and so || Tu ||<|| u ||. For this case, if we set 0 = {x € X | || z ||< Ha}, then
| Tu ||<|| u ||, for u € kK N.ON. (16)

In either of the cases, application of part (i7) of Theorem 1 yields a fixed point
u of T belonging to KN (€22\21), which in turn yields a pair (u, v) satisfying (1),
(2) for the chosen value of A. This completes the proof. - . O

4. Examples

In this section we give some examples illustrating our results. For the sake of

simplicity we take p(t) = q(t) and f(t) = g(¢).
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Example 1. Consider the system of two-point boundary value problem

1 kve®? ~
"(t —AN— = t<1
u()+10 c+ev + e 0, 0<t<,

1 .- kue®v

"(t — AN
Vi) + 10 c+ e* + e?v

u(0) = 0=14'(1),

v(0) =0 =1'(1).
Here: p(t) = q(t) = 15t, k = 500, ¢ = 1000, f(v) = C—_,_%—%, (u) = %ﬁ
By simple calculations we find: v = 1, fo=g0o = &5 = 2%, foo = go =k =
500, L1 = 0.1969, L, = 6.012. By Theorem 2 it follows that for every A such
that 0.1969 < X\ < 6.012, the two-point boundary value problem has at least one

positive solution.

=0,0<t<]1,

Example 2. Consider the system of two-point boundary value problem

" C .

u (t)+>\tv(1+1+v2>—0,0<t<1,
)+ Mu (14 —— ) = t<1
v (t) + u<+1+u2> 0,0<t<1,

u(0) = v'(0) = /(1) = 0,
v(0) ='(0) =2'(1) = 0.

Hére: p(t) = qt) = ¢, c — 100, f(v) = v(l—i—rcvy), flu) = u(l-l—#i;g).

By simple calculations we find: v = 1167 fo=90=14+¢c¢=101, foo = oo =
1, Lz = 2.7645, Ly = 12. Therefore Theorem 3 holds for every A such that
2.7645 < A < 12.
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