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FRAMES AND SAMPLING THEOREMS IN MULTIWAVELET
SUBSPACES

ZHANWEI LIU*, GUOCHANG WU AND XIAOHUI YANG

ABSTRACT. In this paper, we investigate the sampling theorem for frame
in multiwavelet subspaces. By the frame satisfying some special conditions,
we obtain its dual frame with explicit expression. Then, we give an equiva-
lent condition for the sampling theorem to hold in multiwavelet subspaces.
Finally, a sufficient condition under which the sampling theorem holds is
established. Some typical examples illustrate our results.
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1. Introduction

At the present time the sampling theorem plays a crucial role'in signal pro-
cessing and communication, as it establishes an equivalence between discrete
signals and analogue (continuous) signals. For a band-limited signal, the classi-
cal Shannon sampling theorem provides an exact representation by its uniform
samples with a sampling rate higher than its Nyquist rate. But there exist several
problems. Firstly, real world signals or images are never exactly band-limited.
Secondly, there is no such device as an ideal (anti-aliasing or reconstruction) low-
pass filter. Thirdly, Shannons reconstruction formula is rarely used in practice
(especially with images) because of the slow decay of the sinc function. There-
fore, this classical Shannon sampling theorem has been generalized to many
other forms.

Extensions of Shannons sampling theorem to scalar wavelets can be found in
[1]-[5], but a scalar wavelet cannot have the orthogonality, compact support, and
symmetry at the same time (except the Haar wavelet). It is a disadvantage for
signal processing. Meanwhile, multiwavelets have attracted much attention in
the research community, since multiwavelet has more desired properties than any
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scalar wavelet function, such as orthogonality, short compact support, symme-
try, high approximation order and so on. The first orthogonal multiwavelet with
symmetry, approximation order, and compact support was presented by Geron-
imo et al. [6]. In addition, the sampling theorems for multiwavelet subspaces
were studied in[7]-[10]. The authors of [7] and [9] presented the construction
of compactly supported orthogonal multiscaling functions that are continuously
differentiable and cardinal. The scaling functions thereby support a Shannonlike
sampling theorem. However, the multiwavelets of [7] and [9] do not have sym-
metry. It is not good for digital signal processing and image compression. They
also did not study the sampling theorem for frame in multiwavelet subspaces,
which is very important in application.

In our paper, we provide the dual frame of the frame in multiwavelet subspaces
under some special conditions, and show its formula in frequency space. Then,
we give an equivalent condition for the frame multiwavelet sampling theorem to
hold. Finally, a sufficient condition for the frame multiwavelet sampling theorem
is presented.

This paper is organized as follows. In Section 2 contains some definitions in
this correspondence. Also, we review some relative notations. In the next Sec-
tion, we study the dual frame for a frame in multiwavelet subspaces. In Section
4, we discuss general uniform sampling and establish the sampling theorem for
frame in multiwavelet subspaces. In Section 5, some examples are given to prove
our results.

2. Preliminary

We now introduce some notations used in this correspondence. The shift-
invariant closed subspace V; generated by {¢1, ¢2, -, ¢}

Vo = span{p;(- —k): 1 <i<r k€ Z} C L*(R).

For a function f € L*(R), we denote by (f) the mlmma,l closed shift invariant
subspace that contains f.

Let f=[fi, f2,--+, f+]¥ denote vector(we denote vectors and matrices in this
paper in boldface). The integration [, f(z)dz is defined as

/R f(z)da = | /R fi()da, /R folz)dz, -, /R £(2)da]T

The Fourier transform of vector f is defined by

Fw) = /R f(z)e= 1 dg.

The inverse Fourier transform of vector f is written by

f(a:):/Rf(w)ei‘”“’dw.
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Zs(x,w) = 3, oz flx + n)e”™ is the Zak transform of function f. The Zak
transform of vector f is defined by

Zf(fv"vw) - [Zfl (337“))’ Zf2($7w)> Tty Zfr(xaw)]T-

A collection of elements {¢;(- — k) : 1 < i < r,k € Z} in a Hilbert space
H C L*(R) is called a frame if there exist constants' A and B, 0 < A < B < o0,
such that

AllfIP < ZZI f8i(- - k)I* < Bl flI?, VfeH.

keZ i=1

It {¢;(- —k):1<i<r,k € Z}is a frame for H, then there exists a dual frame
{dr}rez for {¢:(- —k):1 <i<r ke Z}[13, Theorem 5.6.5].
Let ® = [¢1, 2, -+, ¢-]T. For f € H,we can write

Ey ={w € R|Gs(w) >0}, Gsw)= () Iflw+2mk)P)z,

keZ

Nlb—ﬂ

_ |1, tekEs
XBEs =\ 0, t¢E;.
We define operator T : [2(Z) — H by
T{cx}rez = Y ckfr-
kez

The adjoint operator T* : H — [2(Z) of T is called the analysis operator and
satisfies

T*f ={{f, fr)}rez.

To each frame { f; }rcz there corresponds a bounded positive invertible operator
S = TT*, called the frame operator, from H into itself, which satisfies

Sf=> (s fx) fi-

kez

In this case, {S™!fr}rez is called the canonical dual frame for {fx}rcz. The
canonical dual frame gives the reconstruction formula

F=Y (£S5 ) o= (£ fu) ST f
keZz keZ -

Let A C R, Maz{A} means the largest number in subset A, Min{A} means
the smallest number in subset A.
3. Dual frame for multiwavelet subspaces

The main purpose of this section is to study the dual frame of a frame in
multiwavelet subspaces.
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Theorem 1. Let {¢;(-—k):1<i<r k€ Z} be a frame for Vi with bounds
A, B and |Ey, N Ey,| = 0 for all 1,5 € {1,2,---,r},i # j. If the functions

o~

¢i(w) € L*(R)(: = 1,2,...,r) are defined by

R $iw) weE,
$i(w) = 3 104w+ 2nm)]? 1 (1)
0, w Q E¢i,

then {¢;(- — k) : 1 <i <1k € Z} is a dual frame of the frame {¢:i(- — k) : 1 <
i<rkeZ}.

Proof. Suppose that the functions ¢;(w) € L2(R)(i = 1,2,...,r) are defined

by (1). Clearly, 5= |@1(w+2n1r)l2 is 2m-periodic, and its restriction to [0, 27]
nez

belongs to L2(0, 2r). Then, by [13, Lemma 7.3.2], the functions {¢; : 1 <i < r}
belong to V. Using the definition of the frame operator, properties of the Fourier
transform, and [13, Lemma 7.2.1}, we get

54 = S S Ted i) Tid;

jfl keZ

= 33 (60 Tk Thd; (2)
j=1keZ

- £ b
j=1 \k€eZ

Now, using the definition of $:(w), we have

<<$A;,e'““‘”¢7j> = / q;(w)q/é;(w)eik‘”dw

2w
= / Z(qg;(w + 2n7r)7¢>;(w + 2n7))e* dw

27 ~
i 2 =1\ .
= /Z ¢£w+ ) ¢i(w + 2nm) | ¥ dw
] i\ T 19w+ 2nm)P2
- \neE

2v [ 3 di(w + 2nm); (w + 2ﬁ7r)

etF dw.

/ nez
, T |$i(w +2nm)?

0 nez

If i # j, by |Eg, N Ey,| =0, it follows
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2
/ Z ¢i(w + 2nw)$;(w + 2nm) = 0.
0 nEZ

Hence, we can obtain

2 [ > @(w + 2n7r)@(w + 2n)

/ nez = eFvdw = 0.
3 |di(w + 2nm)|?
0 nez
If i = j, then
2 [ Gilw+ 2n7r)g/b;(w + 2nm) 27
ne€z ikw _ —
n e dw = /XE _N[0,27] (w)e—**«dw,
/ > |¢i(w + 2nm)[? J .

0 nez

which is the —k-th Fourier coefficient for the function xg »,N[0,27] in L2(0, 27).
From above results, obviously, the equation

Z <¢z; C_ikm¢j>6_ikw = XE¢,iO[0,27r]
keZ

holds on [0, 27]. Since x g, is 27-periodic, it follows that

Z@;” e—ikxa;)e—ikx = XE,, on R.
keZ
Noting that xg, # 0 if & # 0, (2) now implies that Sq?i = XquZ/;i' = q?z

Hence we have Sq;i = ¢;. Again by the definition of operator S on V}, the proof
is completed. O

4. Multiwavelet sampling theorem for frame

The main purpose of this section is to study the sampling theorem for frame
in multiwavelet subspace. At first, we will prove a lemma.

Lemma 2. Let {¢;(-—k):1<i<r,ke€ Z} be a frame for Vj. If|E¢iﬂE¢j|A=
0,Vi,j € {1,2,---,r}, then {@i(- — k) }rez is the frame for the subspace {(¢;).

Proof. Suppose that the function set F; is defined by F; = {ﬁ = fx By, i [ € W}
Let { fz-l : I € Z} be the Cauchy sequence in F;, then there must exists a function
f € Vp such that limy_., f! = f.
By the definition of set F;, for Vf} € F; and Vg € (Vo\F;), we have (f,g) = 0.
So, it is easy to see
(f,9) = (imi_o fi, g) = 0.
Again by Vy = F; U(W,\F}), it follows f € F;. Hence, F; is a closed set.
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Suppose that {¢;(- — k) : 1 < i < r k € Z} is-a frame for the subspace Vj,
then there exist constants 0 < A < B < 0o such that

AllfI? < Z > f dilz — k)P < Bl

1=1 keZ

Clearly, if f € F;, then (f, ¢;(z — k)) = 0(j # ¢). Hence, we have
ANFIP < ) 1KF dil = R)IP < BIFIP, VS € F.

keZ

By the definition of Frame and ¢; € F;, {¢:(- — k) }xez is a frame for the closed
subspace F;. Then we get the desired result. O

Now, we introduce the main results in this section.

Theorem 3. Let {¢i(- —k): 1 <i<r k€ Z} be a frame for Vy with bounds
A and B. Suppose that ¢;(1 < i < 1) are continuous functions, |Eg, N Eg | =
0, # j, and supier Y i1 D ez |9i(z — k)|* < +o0o0. Then the following two
assertions are equivalent: :

(a) There exists a frame {s;(- — k) 1< i <k € Z} for Vo satisfying
I(Esi\E¢i) U (Esj\E¢j)| = 0,7 # j such that

= Z Z f(n)sm(z —n), Vf € V,

n€zZ m=1

where the convergence is in L?(R).
(b) For alli € {1,2,---,7}, there exist constants A; and B;, 0 < A; < B; <
+oo such that

where aﬁf(w) =D nez ¢i(n)e

Proof. Assume that (a) holds. From Lemma 2, clearly, {#;(- — k) }rcz is a frame
for (¢;). Again by Lemma 2, {s;(- — k) }xcz is a frame for (s;) too.

Because of |(E;,\Ey,) U (ESJ\E¢])| = 0,7 # j, we have E;, C Ey,. Noticing
that |Eg, N Eyg;| = 0(i # j), then

= (si,6:)¢i(z —n)
nez
holds, where the function q?z is the dual frame for {¢;(- — k): 1 <i<r k€ Z}.
Thus, s; € (¢;).
From above results, according to Theorem 1 and Theorem 3 in [14], we get
(i) = (si). So, by Theorem 1 in [11], there exist constants A; and B;, 0 < A; <
B; < +00 such that

Aixp,, (W) <16](W)] < Bixg,, (), ae.w € R. (3)
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Assume that (b) holds. From the argument of Theorem 1 in [11], we have
q‘)* (w) # 0(Vw € Ey,). By the definition of q5* (w) and Ey,, obviously,

(= )xE,. (@) € L2[0, 21).

¢} (W)

Hence, there exists a sequence {cx}rez € I% such that

1 .
(/“; XEq;l che ik w-

¢2’ (w) kez
Let R
¢i(w)
Si(w) = { Ty Y€
O, W € E¢i,
then )
5 [fito +2nm)
> [Bilw dnm) = e . (4)
nez Ol

By (3) and (4), notice that {¢;(- — k) }rez is a frame for the subspace (¢;), from
[12, Proposition 3.1], there exist constants 0 < C; < D; < oo such that

C -
2xE, W) < % 15i(w + 2nm)|?
i nez

D

n€zZ

q/;i(w+2n7r)l2

|83 )]

S ;I—;-XES,: (w)‘
(3

Again by [12, Proposition 3.1], {s;(- — k) }xez is a frame for the shift-invariance
subspace (s;). Using the definition of function s;, it is easy to see that s; € (¢;)
and ¢; € (s;). So {si(- — k) }rez is a frame for the shift-invariance subspace (¢;)
too. From [11, Theorem 1], we have E,, = E4,. By lqun- N E«M = 0,7 .7, then
I(EM\EM) U (Eﬁj\Efﬁj)l =0 and

si(w) = (Z 85 (w))xE,, -

Because of {¢i(—k) : 1 <1 < r,k € Z} being a frame of the subspace Vp, it
follows that for Vf € Vp there exist sequences {ai}rez € I*( 1 < i < r) such

that
f(x Z Z ak¢z(x -
1=1ke€Z
Let fi(z) = Y. al¢i(x —k), by |Es, N E¢,j| = 0,1 # j, then (¢;, ¢;) = 0. Hence

kez

(f1 ) =0,i# .
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= span{qﬁz(:c — k)}kez, from above results, clearly, Vo =

Z @V . Therefore, for all f € Vo, we have f(z) = Z fi(z). Hence,

flw)

= Z(ﬁz(w)Zake —thw

keZ

= Z Z are” " xg,, 87 ()8 (w)

1=1 keZ
T

= 3> gk *xm, 6 W)Y SiW)xa,
j=1

1=1 kez

= 200 ae U (Wxm, 5 (w)

j=1i=1keZ
T Fid

= 220D ak ) dulm)e TG (W)

j=1 i=1keZ nez

= ZZZZ%@”“’C 2(n)w\()

3 =1n'€eZ i=1 keZ

SDIPIFCISET®

j=1n'ezZ

holds. Taking the Fourier inverse transform on both sides of above equation, we

can obtain

@) =33 fw)si(z —n)

j=1lneZ

This completes the proof. . | : O

From the argument of Theorem 3, we can get a useful corollary:

Corollary 4. Let {qﬁz( —k):1<i<rkeZ} bea frame for Vy with’ bounds
A and B. Suppose that ¢;(1 < i < r) are continuous functions, |Eg, N Eg,| =
0,i % 7, and supier Y i—1 Yokez |Pi(z — k)|? < +o00. For alli € {1,2,---,7}, if

there exist constants A; and B;, 0 < A; < B; < 400 such that
¢;k (w)l S BZ'XE¢i 3

then the condition (a) in Theorem 8 holds. In this case,

b3 (w) E
W) ={ F@ Y% 1<i<n
0, w#E@

Aixe,, <

where af(w) =Y ez Pi(n)e .

In the following, we give another main result in this section.
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Theorem 5. Let {¢;(-—k):1<i<r,k € Z} be a frame for Vo with bounds A
and B. Assume that an, € [0, 1) are constants, a; # a; fori # j,i,j=1,2,...,7,
¢:(1 <i <) are continuous and supzer Y ey S opez |9i(x —k)|* < +oo. Then,
there exists a frame {sm(-—n): 1 <m < r,n € Z} for Vo such that

= Z Z f(n+am)sm(x—n), Vf €V

nezZ m=1

holds, where the convergence is both in L?*(R) and uniform on R if there exists

a bounded invertible matriz Ps(w) for 0 < w < 27 such that Pgl(u;)q)(w) C Vo,
where

P‘P(w) = [Zd)l (w), Z¢2 (w)a ey 2y, (w)]a

Z¢>z Z di(n+aq)e —inw Z du(n +az)e —inw o Z bi1(n + ar)e—inw]T'

nez nez nez

Proof. Suppose thatv there exists a bounded invertible matrix Pg(w) for 0 < w <
27 such that Py (w)®(w) € V; holds, where P '(w) is defined by

PN w) = (25, ), Z4u().--+ . 25, ()

—inw ‘ ! —iﬁw l —inw T
Z(m(w E cn € , Cp 2€ yoe E Cp.r€ |

nez nez nez
Let

SW) = F1(w), Ba(w), -, 3 W)]" = Py (w)B(w), (7)

it is easy to know that

[B1(w), -+, 8r(w)]” chn 1€ B (W), e, > Y e ey (w)] T

nez l=1 nez =1
Therefore,

sj(w ZZC n.i€ _m“’cﬁ (wh1<j<r.

nez l=1

Taking the Fourier inverse transform on both sides of this equation, we obtain

sj(z) = Zchqul(a:—n 1<j<r.

nezZ l=1

Since {ciw-}nez € 12(1 < 1,j <r), then there exist constants 0 < C'Jl-(l <l,j<
r) such that

Yo ldf<chi<tjsr
nez :
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From above results, by [11, Lemma 2], we have

Yolsiz+k)? = > Zan.jqﬁl(a:-{-k—n)

keZ keZ |nez I=1

Z Z c se z('r'n+l)w

nez l=1

Z Z di(z + k)e—i(rk+l)w

keZ I= 1

(X LD S it + B)P)

nez l=1 kez i=1

Maz{C}:1<1< T}(Z Z|¢l($ +k)|%),

keZ l=1

2

2
dw

IA

IN

then, we get
DD lsie+R)F = 1))
j=1kez j=lkeZ

< Maz{C}:1<1,5< T}}(Z Z iz + k)%).

keZ =1

- 2
Z Z cfn’jqbl(x +k—n)

nez l=1

(8)

By (7), it is easy to check that

$i(z) =3 > dilam+k)sm(z —k),1 <1<

m=1keZ
Let

Vo = {9(z) € Vb : g(x) = ZZg(am + k)sm(z — k), 1 <m <7},
l=1keZ

clearly, ¢;(z) € Vo, Vo is a linear space and for any g € Vg, n € Z, g(-—n) € Vo
holds.

In the following, we will prove V5 = Vp. For all f € Vp, since {¢;(- — k) : 1 <
i < r,k € Z} is a frame for Vp, then we have f(z) = > _; D pcy choi(x — k),
where {ct}rcz € 2(1 <1< 7).
Define

T

fn(z) = Z Z Ck¢l(x -

=1 k=—n

> > ldl < oo

=1 keZ

Notice that

~
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Then for V§ > 0, there exists a constant number a; > 0(a; € Z) such that
Vb > a1,61 € 7,

—-a1

ZZ |c;,|2+2 Y ldf? <62

=1 k=a; I=1 k=-b

SUPzeR Z Z [é1(z — k)|? < o0,

l=1keZ

similar to the above argument, there exists a number az > 0(az € Z) such that
Yby > aq,by € Z,

-0

Supzer ) Z |bu(z = R)* + SupmezRZ 3 loua — k)P < o7,

=1 k=ag I=1 ke—by

Then, for above § > 0, there exists a number n = Max{a1, a2} such that for all
m>n,me€ Z,

=5l = IS dtim-0+3 Y (o= B)P

llkn llk—-—m

(ZZ|0k$2+Z Z lckl?)

llkn lk—--m

(ZZ |$1(z — k)[? +Z Z [i(z = K)[?)

=1 k=n =1 k=-m

(supscr y_ D |1(z = K)I* + supser D ;Vj |1z — k)[?)

=1 k=n l=1 K==~—m

S+ T 1)
=1 k=n =1 k=—m
< 4.

IN

AN

By the definition of function f,, clearly, lim f,, = f. From above results, it is
n—oxd

easy to check that the functions {f,}nez converges uniformly to f on R. So,
for Vo € R, we have lim f,(z) = f(x). ~

Again by the definition of function fn, we have f, € Vo. Hence

=3 falam +E)sm(z - k).

m=1ke”Z
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Notice that Vz € R, nliwngo fu(z) = f(z), then
fl@) = lm fulo)
.
= nango Z Z falam +k)sm(z — k)

m=1keZ
r

= Z Z nlirgo fn(am + k)Sm(CU - k)

m=1keZ
r

= > ) flam +k)sm(z — k).

m=1keZ

Thus, f € V. By (8), notice that the function f is continuous, then

r

Y3 fam + k)sm(z — k)

m=1keZ

converges uniformly to f(z) on R . 0

5. Some examples

In the following, we present some examples to show the reconstruction using
Theorem 5, and we analyze and compare them with other results in the liter-
ature. In the first examples, we reconstruct a typical multiwavelets using the
result of Theorem 5. The second example gives a case in which a signal cannot
be reconstructed according to our sampling theorem.

Example 6. Geronimo Hardin Masopust(GHM)’s Multiwévelet[ﬁ]:

3 4v2 g 0
Ho={"°45 R Hl:(éﬁ 1)’
20 ‘ 20

T 10

' 0 0 ' 0 0
m=(ag ) m=(lg0)
20 10 20

It is easy to check that GHM’s multiwavelet has orthogonality, compactness,
symmetry, and approximation order of 3, but it does not have the general car-
dinal property. It cannot reconstruct a signal according to Selenick’s sampling
theorem when a1 = 0,a2 = -;—, but our sampl‘ing' theorem holds. We have

S

0 4v2
Pq;(&)) = ( o—iw —5]:3_0 _ %6_1w

Since
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by theorem 5, [51,52,+ -+ ,8:]T = R{l(w)zf), then

3v2 3v/2 ~ R 5 ~

=~ _ iw _|_____ + et , = b
81 = 166 ¢ é1 G2 2 4\/2—¢'1

Taking the Fourier invertible transform, we have

s1(z) = 3\/_¢1($) \/i ¢1(z) + $2(x + 1),

2(a) = imx)

So, we can obtain

f@) = Toerfn) [5201—n) + 82o1(w +1-n) +da(@+1—n)|
+ Y nez fn+ 1) 22 ¢1(z — n). |

Example 7 Chui and Lian’s Multiwavelet[15]:

1 1 1 0
HW(iﬁ iﬁ)’ H1=<0 ;)a
4 4 2

_1
H2=< 2 )
4 4

This multiwavelet has orthogonality, compact support, and symmetry/antisymmetry
but does not have the general cardinal property. It cannot reconstruct a signal

according to Selenick’s sampling theorem. When a; = 0,02 = %, we have

—iw V7 —iw
P¢(w)=(ez PG e >

|§er—i
S

0 -4 T (f 4 Lyeiw
Since .
giw G FHEen
Pyl(w) = TR ]
=+t (e
by theorem 5, [§1,52,+-,8.]T = Pgl(w)&;, then

(3 \/7)+(__; + ﬁ)e—iwa @)
2 ’
\/_+ 16+(\/_ )6 W
1
\/—+ 16+(\/_ IG)e—iw

When a; = 0,03 = -21-, we have

s1(w) = ei“’al (w) + _

P2(w).

s2(w) =
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Rp(w)z((l) (1))

The matrix Py (0) does not exist the invertible matrix Py '(0), then it does not

satisfy the condition of Theorem 5. Hence, the sampling function cannot be

reconstructed for a1 = 0,as = %

Obviously, when w = 0,

6. Conclusion

We study the sampling theorem for frame in multiwavelet subspaces. Mul-
tiscaling functions satisfying sampling theorem have orthogonality, regularity,
short compact support, symmetry, and high approximation order. It is not
possible in the scalar wavelet case. In our paper, for a frame in multiwavelet
subspaces, we present its dual frame with explicit formula. Moreover, we give an
equivalent condition for the sampling theorem to hold in multiwavelet subspaces,
and establish a sufficient condition under which the sampling theorem holds.
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