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MODIFIED KRASNOSELSKI-MANN ITERATIONS FOR
NONEXPANSIVE MAPPINGS IN HILBERT SPACES

S. V. R. NAIDU AND MENGISTU GOA SANGAGO*

ABSTRACT. Let K be a nonempty closed convex subset of a real Hilbert
space H. Let T : K — K be a nonexpansive mapping with a nonempty
fixed point set Fiz(T). Let f : K — K be a contraction mapping. Let
{an} and {Br} be sequences in (0, 1) such that

lim o, =0, (0.1)
n—oo .

oo

Z an = 400, (0.2)
n=0
0<a<pPn<b<l foralln>0. (0.3)

Then it is proved that the modified Krasnoselski-Mann iterative sequence
{zn} given by
Tg € K’
Yn = anf(xn) + (1 - an)l'ny n>0 (04)
Tnt1 = (1 - ,Bn)yn + BnTyn, n 20,
converges strongly to a point p € Fiz(T) which satisfies the variational
inequality ‘ '
This result improves and extends the corresponding results of Yao et al[Y.
Yao, H. Zhou, Y. C. Liou, Strong convergence of a modified Krasnoselski-

Mann iterative algorithm for non-expansive mappings, J Appl Math Com-
put (2009)29:383-389).
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1. Introduction

Let K be a nonempty closed convex subset of a Hilbert space H. Recall that a
mapping f : K — K is said to be a contraction mapping if there exists a constant
A € [0,1) such that
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1f(z) = FWIl < Az -y

for each z,y € K. Throughout the paper we use Ilx to denote the collection of
all contraction self-mappings of K that is,

g ={f: f: K — K a contraction}.
By Banach contraction mapping principle, each f € IIx has a unique fixed point
in K, and for each z € K the Picard iterative sequence {T"x} converges strongly
to the fixed point.

A mapping T : K — K is said to be nonezpansive if

1Tz — Ty|| < ||z —yll
for each z,y € K. We use Fiz(T) to denote the set of fixed points of T'; that
is, Fiz(T) = {x € K : T(z) = z}. Throughout this section, f and T denote
contraction and nonexpansive self-mappings of a nonempty closed convex subset
K of a real Hilbert space H, respectively. :

A wide variety of problems can be solved by finding a fixed point of a partic-
ular operator, and algorithms for finding such points play a prominent role in a
number of applications. In particular, construction of fixed points of nonexpan-
sive mappings and its applications are in the center stage of nonlinear analysis.
In general, the Picard iteration {T™z} may not behave well for nonexpansive
mappings.

In 1953, Mann[6] introduced iterative algorithm given by

{x" €K (1.1)

Tn+l = anZn + (1 — ap)Txy, n > 0.

In the literature, the iterative algorithm defined in (1.1) is referred as Krasnoselski-
Mann iteration (or Mann iteration). '

Many well-known algorithms in signal processing and image reconstruction
are iterative in nature. For instance, Byrne [2] shown the application of Mann
iteration to signal processing and image reconstruction. Also, the projection onto
convex sets methods and iterative optimization procedures, such as entropy or
likelihood maximization, are the primary examples. In this line, H. K. Xu[9]
applied Krasnoselski-Mann iteration to solve quadratic optimization.

Almost all of the results in the literature on the Mann iterative algorithm
for nonexpansive mapping have only weak convergence even in a Hilbert space.
To obtain strong convergence, in 2009, Yao et al[ll] proposed the modified
Krasnoselski-Mann iterative algorithm defined as

o € K
Yn = (1 - an)xna n>0 _ (1.2)
Tnt+1 = (1 = Bn)yn + BnTyn, n >0,

and proved the following

Theorem 1.1. ([11], Theorem 3.1) Let H be a real Hilbert space. LetT : H — H
be a nonexpansive mapping with Fix(T) # 0. Let {a,} and {B,} be sequences
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in [0, 1] such that

(YZL1) nliw)ngocxn =0; (YZL2) Z;)ozn = 00;

(YZL3) B € [a,b] C (0,1) for all n > 0.
Then the sequences {z,} and {yn} defined in (1.2) converge strongly to a fived
point of T. ‘

The purpose of this paper is to propose the generalized form of the above
iteration, and to prove strong convergence of the proposed iteration to a fixed
point of T' which satisfies certain variational inequality.

2. Preliminaries

Let H be a real Hilbert space with inner product denoted by (, ) and norm
by || , |I, and z,y € H. Then

2 2 2
lz +ylI” = llzl|” + 2¢z, y) + |yl
2 2 2
= llzl” + [2(z, ) + 2 [lll"] = lI9l
2
= |lz|* + 2(y,z +v) — llyll”-
Thus we have the following
Lemma 2.1. Let H be a real Hilbert space and x,y € H. Then
lz + ylI* < ll2ll* + 2(y, = + v).
Let K be a nonempty closed convex subset of a Hilbert space H. A mapping
T : K — H is said to be demiclosed if for any sequence {z,} C K which
converges weakly to o € K, the strong convergence of the sequence {Tz,} to

Yo € H implies T'zg = 1qg. .
Below, Lemma 2.2 and Lemma 2.3 were proved in 1967 by Z. Opial[7].

Lemma 2.2. ([7], Lemma 1) If in a Hilbert space H the sequence {x,} is weakly
convergent to xo, then for any x # xy,

limsup ||z, — zo|| < limsup ||z, — ]| .
n—0oo n—o0

Nowadays Lemma 2.2 is referred as Opial’s condition.
Lemma 2.3. ([7], Lemma 2) Let K be a nonempty closed convex subset of a

Hilbert space H. Then for every nonexpansive mapping T : K — H, the mapping
I —T s demiclosed.

Recall that the metric projection Pk from a Hilbert space H to a nonempty
closed convex subset K of H is defined as follows: Given z € H, Pk(z) is the
only point in K with the property

lz = P (2)|| = inf{[|z — gl : y € K}

The following lemma characterizes Py .
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Lemma 2.4. ([5], pp.132-136) Let K be a closed convex subset of a real Hilbert
space H. Givenx € H and y € K. Then y = Pg(z) if and only if for all z € K

(y—z,y—2) <0
Let f € Il and let T be a nonexpansive self-mapping of K. Then for each
t €(0,1), a mapping T3 : K — K defined by
Tix=tf(x)+(1-t)Tx, z € K,
is a contraction; indeed for z,y € K we have
ITez — Toyll <t f(z) = FWI + (L =) [Tz — Ty
SA=t1=N)llz—yl,

where A € [0, 1) is the Lipschitz constant of f.
Let y; € K be the unique fixed point of T}; that is,

ye = tf(ye) + (1 = t)Ty,. (2.1)
In 2004, H. K. Xu [10] proved

Lemma 2.5. [10] Let K be a nonempty closed convexr subset of a real Hilbert
space H. Let T be a nonexpansive self-mapping of K with Fix(T) # 0 and
fellk. Let {y:} be given by (2.1). Then we have
(1) imy—oys = T exists;
(2) z = Psf(Z), where S = Fixz(T), or equivalently, T is the unique solution
in Fiz(T) to the variational inequality

((I-f)z,z—2)<0, z € Fiz(T).

Lemma 2.6. ([8]) Let {An} be a subset of a nonnegative real numbers such that
(1) Ang1 < (1= an)An + anfn, ‘
(2) 02, an =+00, and
(3) limsup,, o Bn <0 or Y o7 |anfn| < +o0.

where {an} C (0,1) and {Br} is a real sequence. Then limy,_ oo Ap = 0.

3. Main results

Let H be a real Hilbert space with inner product denoted by (, ) and norm
by || , || and K a nonempty closed convex subset of H. We use IIx to denote
the set of all contraction mappings of K into itself. The following lemma plays
key role in our proof of the main result of the paper.

Lemma 3.1. Let K be a nonempty closed convex subset of a real Hilbert space
H and suppose T : K — K is a nonezxpansive mapping with Fiz(T) # (. Then
there is a unique mapping A : 1 — Fix(T) such that

limsup((I — f)A(f), A(f) —zn) <0,

n—oC

for any given f € Iy and a bounded approzimate fized point sequence {x,} of T
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Proof. Let f € Ik and let {z,} be a bounded approximate fixed point sequence
of T in K; that is, lim, .~ ||z, — Tz,|| = 0. By Lemma 2.5, there exists a unique
continuous path {y:} in K such that

ye = tf(ye) + (1 — )Ty,

for all ¢t € (0,1) and lim;_,gy; = g € Fiz(T). Define A(f) = q.
Let {zn;} be a subsequence of {x,} such that

limsup((I - f)g,q — zn) = Jim (I = £)g,q = Zn,)-

n—00

Without loss of generality, we assume that {z,,} is weakly convergent to Z € K.
Since I — T is demiclosed by Lemma 2.3, Z € Fiz(T).
Thus, we get

limsup((I - f)g,q — zn) = jliglo((f — )29 — zn;)
= <(I_f)Q7q_§>
Again by Lemma 2.5, we have ((I — f)q,q — Z) < 0. Therefore,

limsup(( — f)g,q — z») < 0.

n—oe

This completes the proof. O

Let K be a nonempty closed convex subset of a real Hilbert space H, T : K —
K a nonexpansive mapping and f € IIx. Let {a,} and {3,} be sequences in
[0,1]. Consider the iterative sequences {z,} and {y,} in K defined by

xg € K
Yn = anf(xn) + (1 - an)xna n>0 (31)
Tpt1 = (1 - Br)yn + BnTyn, n > 0.

Theorem 3.2. Let K be a nonempty closed convex subset of a real Hilbert space
H, T : K — K a nonexpansive mapping with Fiz(T) # @ and f : K — K a
contraction mapping with Lipschitz constant A € [0,1). Let {ayn} and {B,} be
sequences in (0,1) such that

lim a, =0, (3.2)
n—0C

Z anp = +o00, (3.3)
n=0 .
0<a< B, <b<1 for some constants a,b. (3.4)

Then for any initial point xq € K, the sequences {z,} and {y,} defined in (3.1)
converge strongly to a point p € Fix(T) which satisfies the variational inequality

(p— f(p),p—2) <0, Vz € Fiz(T).
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Proof. Let z € Fiz(T) be fixed. It follows from (3.1) that

[Zn+1 = 2ll < (L= Bn) lgn = 2l + Bn | Tyn = 2|
< lyn — 2|l
<an | f(@n) =2l + (1 - an Iz — 2|
< an [[f(@n) = F(@)I + 0 [1f(2) = 2l + (1~ an) |20 — 2|
< anAzn — 2| + on || f(2) — 2| +(1 - an) [[zn — 2|
= an 1£(2) = 2l + [1 = an(1 = N}l — 2]

< max{ 1)~ 2l Jlem — 2.

By induction, we obtain
|1znt1 = 2l < max{—=11f(2) — =, llzo — 2[|}.

Therefore, the sequence {z,} is bounded, so are {f(z,)}, {Tzn}, {yn} and
{Tyn}.
Now for each z € K and z € Fiz(T) we obtain
1Tz = 2" = (T2 = 2) + (z = =)

=Tz - z|* + 2(Tx — 2,2 — z) + ||z — z|°
<2z—z|*+ 2Tz~ 2,2 — x) |
52”2—3:1}2+2(Ta:—a:,z—a:)+2(a:—z,z—a:)
=2|z—z|> +2(Tz ~z,2—z) — 2||z — z|°
=2(x — z,x — T'z).

Hence for every z € K and z € Fiz(T), we have

ITz — z||? < 2z — 2,z — Tx). (3.5)
From (3.1), we note that |
1
Yn — Tyn = b—(yn - xn—{—l)- (36)

By Lemma 2.5, there is a unique point A(f) = p € Fiz(T) which satisfies the
variational inequality

(p— f(p),p—2) <0, Vz € Fiz(T).

We need to show that both sequences {z,} and {y,} converge strongly to the
point p.
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From (3.1) and (3.5), we have

zn+1 =2 = 11 = Ba)yn + BuTyn — oI’
= [l(yn — p) = Bu(¥n — Tya)|I”
= {lyn — pII* ~ 262 (¥n — P, ¥ — T¥n) + B2 4n — Tyl
< lyn = 2 = Bullym = Tynll® + B2 [yn — Tyl
= llyn = 2II* = Bu(L = Bn) llyn — Tynll*;

so that from (3.6) we get
1 - B,

|znt1 =Pl < llyn — plI* - v - ol (3.7)
It follows from (3.4) that
1-6 1-—
p=it e b (3:8)
n

Znt1 — pl®

< |lyn — 21> = & llyn — Tns1ll®

= llon(f(za) = £(0)) + an(f(P) —p) + (1 — an)(zn — P)|”

— pllan(f(@n) = Tn) + (@n — Tnt)l|”

= o, [ f(@n) = F®)II° + 2an(1 = 0n)(f(p) — P, %n — D)

+ (1= an)? & = plI* = tllon(f(@n) = Tn) + (@n — Tnsa)|®

< [1 = an(l = N llzn = plI* + 2001 — @n){f (D) = P, yn — P)

= o2 [|f(zn) = nll® = 2100 {f(Tn) = Tn, Tn — Tnt1) — #[|Zn — T
< N = I + anl= llzn — pI> +2(f(®) — P, & — B) — 1| f(@n) — zall?
= 20(f(Tn) — Tn, Tn — Tnt1)] — 4T — T ||

< ||zn — p||2 +anM — p||zn — -’13n-+~1”2 ;

where M = sup{2(f(p) — p,zn — ) — | f(@n) — @nll® = |z — pII* — 20(f (zn) -
ZTn,Tp — Tpy1) : 1 > 0}. Therefore, we have

|Znt1 = pl* = |2n = DI* + # |20 — Zna1||? < @nM. (3.9)

Now we consider two cases.

Case 1. {||z,, — p||} is a monotonically decreasing sequence.
Then lim,,_ ||z, — p|| exists. Hence from (3.9) we obtain

n—ao
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It is not difficult to see from.(3.1) and (3.2) that
Tim e — ]l = 0. (3.1

From (3.10) and (3.11), we can easily get that

Ty = @) =0, (312)
It follows from (3.6) and (3.12) that

Tim |l ~ Tyl = 0. (3.13)
Since

l#n — Tn|l < l&n — ynll + llyn — Tynll + | Tyn — Tzn|
< 2{|en = ynll + llyn — Tyl

hence from (3.11) and (3.13), we get

lim ||z, — Tz,| = 0. (3.14)
n—00 .
By Lemma 3.1 and (3.13), we have
limsup(p — f(p),p — yn) < 0. (3.15)

Now from Lemma 2.1 we get

|zn+1 = plI* < llyn = pII°
= [lan(f(zn) = £(P)) + an(F(p) — p) + (1 — an)(zn — P)|I”
< Jlan(f(zn) = F(0)) + (1 = an)(@n = P)II* + 200 (f(P) =P, yn — P)
< lon || f(zn) = fFOI + (1 — an) |20 = pl]* + 20 (f (P) = P, Yn — D)
<1~ an(l = N |lzn — plI* + 200 (f(P) — P, yn — P);

so that | »

|zns1 = pl* < [1 = an(@ = M]llza = plI* + 200 (f(0) =P, yn —P).  (3.16)
Now using (3.3), (3.15), (3.16) and applying Lemma 2.6, we get

lim [z, —p|* = 0.
i Aamde o

Therefore, the sequence {z,} converges strongly to p. Consequently, {y.} also
converges strongly to p.

Case 2. {|lz, — p||} is not a monotonically decreasing sequence.

Let T, = ||z, —p||>, n > 0. Since {||zn — p||} is not a monotonically de-
creasing sequence, there exists a nonnegative integer ng such that I',, < T'py41.
Define a sequence {®,}52,,, of nonnegative integers as follows

(I)n' = max{j j S n, Fj S Fj+1}, n 2 ny.

It is clear from the definition that {®,};2, is an increasing sequence. If we
assume that ®, —» N < 400 as n — 00, then {||z, — p||}3Zy is a monotonically
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decreasing sequence and we have nothing to prove as the conclusion follows from
Case 1. Thus we assume ®,, — +o0o0 as n — oo. Since I'p,, < I'g, 41 for each
n > ng, we get from (3.9) that

plze,+1 — 2o, |* < To,41—To, + a0, 11 — zo,||” < aa, M.

Thus we have
lim ||zg,+1 — %, || = 0. (3.17)

n—00
Since ®, — +00 as n — 00, we also have

lim (o0, s, || = 0. (318
It follows from (3.6), (3.17) and (3.18) that
N—00
From (3.18) and (3.19), we get
lim “T:L'q;n - xq,nn =0. (3.20)
T OO

By Lemma 3.1 and (3.19), we obtain
Jim (p — f(p),;p - ye,) <0 (3.21)

By using Lemma 2.1, for each positive integer n > ng we obtain
0<Ts,+1 —Te, = |72+ —pl? - lze, — pII’

<y, ~2l* = llze, - pI’

<[1-a, (1= VP |lzs, —pl* + 200,(f() ~ p,¥s, ~ ) = |za, — 7|

<[1-ag,(1=Nllze, -l +200,(/(p) ~ p,y2, =) = llzs, —p|*

= —ag, (1= N [|lza, -l + 204, (f(p) — P, ye, — P);

so that 5 A ‘
|lze, —plI* < V@ ~-pye. - p) (3.22)
Hence, we deduce from (3.21) and (3.22) that
lim T's, = lim ||ze, —p||* = 0; (3.23)
n—od n-—00
so that
| lim_[lya,, —pl* =0. (3.24)
As a consequence of (3.24), we get
lim Tp, 41 = lim |zg,41 —p||* = 0. (3.25)
n—oo n—oo

It is easy to check that for n > ng,I'; > T'j4; forall @, +1 < j <nif d, < n.
Hence, I'y < T'p, 41 whenever ®, < n. It is also trivial that T, < T'g, 41 if
®,, = n. Therefore, for each n > ng-we have

0< Fn < F‘Pn+l' | (326)
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It follows from (3.25) and (3.26) that _
' | lim T, = 0. (3.27)

n—oc

Therefore, {z,} converges strongly to p. Consequently, {y,} also converges
strongly to p. This completes the proof. O

Remark 3.3. If f = u € K, then Theorem 3.2 reduces to the following corollary.

Corollary 3.4. Let K, H, and T : K — K be as in Theorem 3.2. Let u € K be
fired. Let {an} and {Bn} be sequences in (0,1) satisfying the conirol conditions
(8.2), (3.3) and (3.4). Then the sequences {z,} and {y,} defined by

o € K ‘
Yn = apu+ (1 —ay)zp, n >0 | (3.28)
Tnt1 = (1 = Bn)yn + BnTyn, n > 0.

converge strongly to a point p € Fiz(T) which is nearest to u.

Remark 3.5. If u=0 and K=H, then Corollary 3.4 reduces to Theorem 3.1 of
Yao et al[11]. Therefore, Theorem 3.2 is an extension of main results of Yao et
al[11].
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