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TRIPLE POSITIVE SOLUTIONS OF SECOND ORDER
SINGULAR NONLINEAR THREE-POINT BOUNDARY VALUE
PROBLEMS

YAN SUN

ABSTRACT. This paper deals with the existence of triple positive solutions
for the nonlinear second-order three-point boundary value problem

Z'(t) + a(t) f(t,2(t), 7 (t)) =0, t€(0,1),

2(0) = vz(1) 2 0, 2'(n) =0,
where 0 < v < 1,0 < 7 <1 are constants. f : [0,1] x [0,400) x R —
[0,+0c0) and a : (0,1) — [0, +00) are continuous. First, Green’s function
for the associated linear boundary value problem is constructed, and then,
by means of a fixed point theorem due to Avery and Peterson, sufficient
conditions are obtained that guarantee the existence of triple positive so-

lutions to the boundary value problem. The interesting point is that the
nonlinear term f is involved with the first-order derivative explicitly.
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1. Introduction

The purpose of this paper is to establish the existence of triple positive solu-
tions for the following singular three-point boundary value problem (BVP)

2"(t) + a(t) f(t, 2(t), 7 (¢)) = 0, te€ (0,1),

2(0) =vz(1) >0, 2'(n) =0, (1.1)

where 0 < v < 1, 0 < 5 < 1 are constants. f : [0,1] x [0,400) x R —
[0,4+00), a:(0,1) — [0, +00) are continuous.
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~ Three-point boundary value problems (BVPs, for short) of differential equa-
tions or difference equations arise in a variety of different areas of applied math-
ematics and physics. The study of three-point boundary value problems for
nonlinear ordinary differential equations was initiated by Il'in and Moiseer [11].
Since then, nonlinear multi-point boundary value problems have been widely
studied (see [1 — 8, 12 — 18] and the references therein). In [12], by applying
the fixed point theorem, Liu proved the existence of at least one or two positive
solutions for the following three-point boundary value problem

2+ h(t)f(z(t)) =0, te(0,1),
2(0) =0, 2(1) = £z(n) = 0,

where 0 <7 < 1,0 <€ < 1, f € C([0,+), [0, +0)), h € C([0,1], [0, +00))

and there exists ¢y € [n, 1] such that h(tp) > 0. In [17], Webb considered

the existence of multiple positive solutions for the following nonlinear heat flow
problem :

-2 = g(t)f(tv Z)v te (07 1)’ ' (12)
subject to the following nonlocal boundary conditions
Z(0)=0, Bz'(1)+2z(n) =0, (1.3)

where 0 < n < 1,9 € L'0,1], f : [0,1] x R — R satisfies carathéodory
conditions. '

The problem (1.2) and (1.3) is a model for stationary solutions of a heated bar,
with a controller at 1 removing or adding heat dependent on the temperature
detected by a sensor at 7, the boundary condition at 0 corresponds to that end
being insulated.

In [16], by using Leray-Schauder nonlinear alternative, Sun and Liu estab-
lished the existence of nontrivial solution for the three-point boundary value
problem

24 ft, 2)=00<t<1,
Z'(0) =0, 2(1) = &2(n),
where n€ (0, 1), E€ R, £E#1, f € C([0,1] x R,R). '

Motivated greatly by the works mentioned above, the aim of the present
paper is to improve and generalize the results in the above mentioned references.
Obviously, what we discuss is different from those mentioned above and our
positive solutions are nontrivial ones. The main new features presented in this
paper are as follows: Firstly, the problem (1.1) has more general form in which
a(t) possesses singularity, that is a(t) may be singular at t = 0 and/or t =
1. Secondly, the conditions imposed on nonlinear term are growth conditions.
Thirdly, the main technique used in the analysis will depend on an application
of a fixed-point theorem due to Avery and Peterson [6] which deals with fixed
points of a cone-preserving operator defined on an ordered Banach space. The
emphasis is put on the nonlinear term involved with all lower-order derivatives
explicitly. This paper is organized as follows. Some preliminaries and a number
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of lemmas are given in Section 2. The main results on the existence of triple
positive solutions are stated and proved in Section 3.

2. Preliminaries and Lemmas

In this section, we present some notations and lemmas that will be used in
the proof of our main results.

Definition 2.1. By a nonzero solution, also called a C[0, 1] solution of the
problem (1.1), we mean a function z € C[0,1] N C?(0, 1) satisfying the problem
(1.1) with 2(t) not identically zero on (0,1). z(t) is called a C*[0, 1] solution,
we mean that z’(0+) and 2/(1 — 0) exist. z(¢) is called a positive solution of the
problem (1.1) if 2(t) is a solution of the problem (1.1) and z(t) > 0 for t € (0, 1).

Definition 2.2. Let E be a real Banach space and P C E be a nonempty
closed convex set. P is called a cone if the following two conditions are satisfied:
(i) z € P, A > 0 implies Az € P;
(i) z € P, —z € P implies 2 = 0.

Definition 2.3. Let E be a Banach space and P C E be a cone. The map
a: P — [0,400) is called a nonnegative continuous concave function on P if
a is continuous and

a(Az + (1 = N)y) > da(z) + (1 = Na(y)
forallz,y € P and X € [0,1]. Similarly, we say the map B: P — [0, +00) is
a nonnegative continuous convex function on P if B is continuous and

B(Az + (1 - A)y) < AB(z) + (1 = N)B(y)
forallx,y € P and X € [0, 1].

Let v and 6 be nonnegative continuous convex functionals on P, a a non-
negative continuous concave functional on P, and ¢ a nonnegative continuous
functional on P. Then for positive real numbers a, b, ¢ and d, we define the
following convex sets:

P(y,d) ={z € P|(z) < d},

P(y,a,b,d)={z€ P|b<a(z), 7(z) <d},
P(v,0,a,b,c,d)={z€ P|b< afz), 6(z) < ¢, ¥(z) <d},
R(v, ¢, a,d) ={z€ P|a<p(z),(2) <d}.

The following well-known fixed-point theorem due to Avery and Peterson [6]
is fundamental to search for triple positive solutions of the problem (1.1).

Lemma 2.1.1% Let E be a real Banach space and K C E be a cone in E. Let
v and 6 be nonnegative continuous convex functionals on P, a be a nonneg-
ative continuous concave functional on P, and ¢ be a nonnegative continuous
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functional on P satisfying o(uz) < pp(z), for 0 < u < 1, such that for some
positive numbers M and d,

a(z) < ¢(z) and |z]| < MA(2), (2.1)

for all z € P(v, d). Suppose T : P(r, d) — P(r,d) is a completely continuous
operator and there exist positive numbers a, b and ¢ with a < b such that

(B1) {z€P(v,0, a, b, c,d)|a(z) > b} # ¢ and a(Tz) > b

for z € P(v, 0, a, b, ¢, d);

(B2) aTz) > b for z € P(, a, b, d) with (Tz) > ¢;

(B3) 0¢ R(v, ¢, a,d) and ¢(Tz) < a for z € R(v, ¢, a, d) with p(z) = a.
Then T has at least three fixred points z1, z2, z3 € P(, d), such that

v(z;) £d, for i=1,2,3; b < afz);

a < p(z0) with a(z) <b; v(z3) < a.

We need some preliminary results before proving our main results. First,
Green’s function for the associated linear BVP is constructed.

Lemma 2.2. Let0 <v <1, geC [0, 1], then the fbfa’owing boundary value
problem

2'(t)+g(t) =0, 0<t<1, (2.2)
2(0) = vz(1) 20, 2'(n) =0, (2.3)
1
has a unique solution z(t) = / G(t, s)g(s)ds, where
0

s, s<t, s<n,
1 vs+(1—-v)t, t<s<m,
1-v s—v—(1-v)t, n<s<t,
vs—v, n<st<s,

G(t,s) =

Proof. It follows from (2.2) that

z(t) = 2z(0)+ 2'(0)t - /t ds /S g(r)dr, Z'(0) = /07’ g(s)ds,

z(0) .= ~2 '(0) — ds

g(?‘

- 1_V/ )ds — _V/ds/

So



Triple positive solutions of second order singular 767

z(t)—-l_y/ s)ds—l_y/ ds/
+ /0 tg(s)ds — / ds / g(r)dr
=#/0 g(s)ds——/ ds/ g(rdr—/ds/ g(r
_yru-vt ( )/g(s)ds——/ dr/ s)ds——/dr/

= /Ot(t—s)g(s)ds— 1_V/()1(1—s) ()d3+—1—1_:,/L/0 g(s)ds

If t <n, then

! -5
0= [ ot + [ A s [ XD gt

If £ > n, then
ts—v—(1-v)t ot -
2(t) /—g(s ds+/ szv=(1-v) g(s)ds—/ U S)g(s)ds.
n ¢ l1—v

1—v

Therefore, the problem (2.2) and (2.3) has a unique solution

z(t) = —/O (t —s)g(s)ds — ] _V_ /0 (1 - s)g(s)ds + il L /077 g(s)ds

l1—v

v

fo =9(s)ds +fn —"s+(1 ")tg(s f U(l S)g(s)ds, t<mn,

fO 1—1/ ds +f f_ﬁ__(]‘_u)tg(s ft U(l s) g(S)dS, > n

1
= / G(t, s)g(s)ds.
0
This completes the proof. 7 O

Lemma 2.3. Suppose that 0 < v < 1, then | G(t,s) |< l—iu, for (t,s) €
[0,1] x [0, 1]. |

From Lemma 2.2 we know that if 0 < v < 1 and 0 < 7 < 1, then for g € C[0, 1]
and g(t) > 0, the unique solutlon z(t) of the BVP (2.2) and (2.3) is nonnegative
and satisfies 0 < z(t) < = fo g(s)ds.

In what follows, we shall consider the Banach space C[0, 1] equ1pped with the
ordering z < y if z(t) < y(t) for all ¢ € [0, 1], and the maximum norm

I =max{ mex [£(0), ma |20}

0<t<1 0<tL1
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Denote the cone K by
K={zeC[0,1}] 2(t) > 0,2(0) = v2z(1) > 0, 2(n) = 0, z is concave on [0, 1]}
Define the integral operator T : K — ([0, 1] by

z(t):/0 G(t, s)a(s) f(s, z(s), 2'(s))ds.

It follows from Lemma 2.1, the problem (1.1) has a positive solution z* = z*(¢)
if and only if z* is a fixed point of T.

Lemma 2.4. Every function z € P is differential a.e. (almost everywhere) on
(0,1) and satisfies
z(t) = |[z[¢(1 =) on [0,1],

P (t)[_t(z(t)) ae. on (0,1).

Proof. Since z(t) is continuous on [0, 1], let z(¢p) = Joax, z(t), for to € (0,1),
then Hz” = z(to) It follows from concavity of z(t) on [0, 1] that
| z(t) > t||z]| for z € 0,t0],
z(t) > (1 —t)||z|| for z € [to,1].

Therefore z(t) > t(1 — t)||z]|.
On the other hand, by mean value theorem, we have

2yl < 28

|2/ (t)] < 1 (—)t for z € [to, 1].

for z €0, o],

t
Therefore [2/(t)| < 2() This completes the proof. 0

t(1—t)
We adopt the following assumptions:
(H1) a € C((0,1),]0,+00)) with 0 < fol a(s)ds < +o0;
(H2) f € C(]0,1] x [0,+00) X R, [0,400)).

Lemma 2.5. Assume that (H1) and (Hy) hold. ThenT : K — K is completely
continuous.

Proof. From the fact that = a(t) f(t, 2(t), 2'(t)) > 0, 2(t) > 0 and Lemma
2.1. we know that z is concave on [0, 1]. By Lemma 2.2, we know that TK C K.

For n > 2, define

inf {a(t), a(%), a(n)}', 0<t< ;ll-,
an(t) = 1 a(t), <<
inf{a(t), a("T_l),a(n)}, 1———71; <t<1.
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Then a, : [0,1] — [0, +00) is continuous, and a,(t) < a(t), t € (0,1).
Define |

1
nz(t) =/ G(t, s)an(s)f(s,2(s), 2’ (s))ds, n > 2.
0
Thus T, : K — K. Obviously, for each n > 2, T, is compact on K. Denote

={z € K : ||z|| £ 7} for all 7 > 0, then T, is uniformly approximate to T.
In fact, for fixed 7 > 0 and z € B; for any t € [0, 1], we have

1
/0 G(t, 9)la(s) — an($)) (s, 2(s), #/(s))ds

1
1

+/1 la(s) — an(s)|f(s, 2(s), 2 (S))ds}

< %0 [ /; i la(s) — an(s)|ds + / 11 fa(s)—an(s)ids}

1-v

T 2(t) — Tz(t)| =

| /0 la(s) = an ()5, 2(s), 7 ())ds

where ¢y = max{f(¢, 2(t), 2’ ()| (¢, 2, 2') € [0,1] x [0, 7] x [T, 7]}. From (H;),

we know |a(s) —a,(s)] € L*(0, 1). Notice that 0 < a,(s) < a(s), so (2.4) implies

that lim ||T,z — Tz|| = 0 for z € B,;. Therefore T is compact. On the other
n—o0

hand, by Lebesgue Control Convergence theorem, we easily see 7' : K — K is

continuous. So T is completely continuous. The proof is complete. 0

3. Main results

In this section we shall impose growth conditions on f which allow us to apply
Lemma 2.1 to establish the existence of triple positive solutions of the problem
(1.1). Let the nonnegative continuous convex functional 6, , the nonnegative
continuous concave functional «, and the nonnegative continuous functional ¢
be defined on the cone K by

v(z) = Jnax [z’(t)] w(z) =0(z) = Jnax [z(t)] a(z) = o%i% |z(t)|, for z € K.

L < 24— / < 1-n "
emma 3.1. Oma,x lz(t)] < = ax, |2'(t)] < =L Orgéiz(l[z (t)|, for z € K.

Proof. Notice that for all z € K, we obtain

z(t) = z(0)+ /Ot Z'(s)ds = vz(1) + /t Z'(s)ds

0

< < !
< v max |2(t)] +1t max |2'(t)] < v max |2(t)] + max |2'(t)]
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. . t

/ — / 1" < " Y

S0 = )+ / #(s)ds < gmass 12"(0)| (6 = )

< (l-n)orgggcllz 1.
Therefore
1-n "
< <

B OIS T @Ol T e 0L 6

Consequently, combining with the concavity of z, the functionals defined above
satisfy

v0(z) < o(z) < 0(2) = ¢(2),

el = max{6(z), 7(=)} < 1= (3.2)

=(2).
for all z € P(v, d). Therefore, condition (2.1) is satisfied. O

For convenience, in what follows, we denote constants by

M

i 4

B = min {/01 G(0, s)a(s)ds, /01 G’(l,s)q(s)ds}, M = /Ola(s)ds, N = ]

Now we present our main result and proof.

Theorem 3.1. Suppose that (Hy) and (Hz) hold. Assume that there exists
0<a<bd< l—f_; such that

(AI) f(tyu’v) S Wdf fOT;(t,'U/,’U) € [0’1] X [O) 1— 1/] [ d d]

(A2) f(t,u,v) > & for (t,u,v) € [0,1] x [b, 2] x [~d, d],

(A3) f(t,u,v) < & for (t,u,v) € [0,1] x [0, a] x [~d, d].
Then the problem (1.1) has at least three positive solutions z1, zo and z3 satisfying

| | d
< o ‘ .
Orgggllz()l..d for i=1,2,3; b<,or%1t1§1!zl(t)1, Jax [z (t)] < 7=

b N _ -
a < Joax, |z2(t)| < 2 with J2in, |zo(t)] < b;

and.orgtaécl [23(t)] < a.

Proof. We now show that all the conditions of Lemma 2.1 are satisfied. If

z € P(v,d), then v(z) = Jnax |z’(t)| < d. From (3.1), one has Jtnax |2'(t)| < d,

max |z(t)] < %, then assumptlon (A;) implies f(t, 2(t), 2’ (t))_<-i

0<t<1
On the other hand forall z € K C P, we have Tz € K C P, then Tz is

concave on [0, 1] and

nax (T2)' (#)] = max {|(Tz)'(0)], |(T=) (1)|}-
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Thus, for any ¢ € [0, 1], we obtain
_ /
V(Tz) = 2o, [(T'2)"(t)]

~ max { /O " a(s) (s, 2(s), 2 (3))ds, /t " als) f(s,z(s),z’(s))ds}

0<t<1

d 1
< M/o a(s)ds =d.

Hence, T : P(y, d) — P(~, d).
To check condition (B;) of Lemma 2.1, we choose z(t) = 2, t € [0,1]. It is
easy to see that z(t) = £ € P(v,0,a,b,%,d) and a(z) = a(2) > b, and so

tYR)

{z e P(r,0,0,0,%,d) | a(2) > b} 4.

Hence, for z € P(v,0,a,b,2,d), there is b < 2(t) < 2, [/(t)| < d for t € [0,1].

Thus, it follows from condition (Az) of this theorem, we have f(t, 2(t), 2'(t)) >

% for ¢ € [0, 1], this together with the conditions of o and the cone K, there are

the following two cases to distinguish (7) a(T'z) = T'z(0) and (i) a(Tz) = T2(1).
In case (i), we have

1 1
a(Tz) = Tz(0) =/O G(0,s)a(s) f(s, z(s), 2'(s))ds > %/0 G(0, s)a(s)ds > b.

In case (i7), we have

a(Tz) =Tz(1) = /0 G(1, s)a(s)f(s, z(s), 2’ (s))ds > %/0 G(1,s)a(s)ds > b,

ie., a(Tz) > b for all {z € P(v, 0, a, b, %, d)} This show that condition (Bj)
of Theorem 2.1 is satisfied.

Secondly, from (3.2), we have o(Tz) > v8(Tz) > v - g = b, for all z €
P(v, e, b, d) with 6(Tz) > . Thus, condition (Bz) of Lemma 2.1 is satisfied.
Finally, we show that condition (B3) of Lemma 2.1 also holds. Obviously,

©(0) = 0 < a, we have 0 € R(v, ¢, a, d). Suppose that z € R(7, ¢, a,d) with
©(2) = a. Then by the condition (A3) of this theorem, we have

p(2) = max, [T=(t)| = max / (G(t, 5) a(s) (s, 2(s), 2/ (s))ds

a
1—1/.N/0 a(s)ds = a.

So, the condition (Bs3) of Lemma 2.1 is also satisfied. Therefore, an application of
Lemma 2.1 implies the boundary value problem (1.1) has at least three positive
solutions z;, zo and z3 such that

d
z < ) = . <
()r~r<lf2%| At <d for i=1,2,3 b< ()mtlgllz ®l; 012?2{1"2 (B < 1-v

9
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o< max ()] < 2 with min [z(t)] < b
max |z - w
0<t<1 2 v 0<t<1 ?
and Jmax |z3(t)| < a. This completes the proof. O
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