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ABSTRACT. We introduce a new iterative algorithm for equilibrium and
fixed point problems of three hemi-relatively nonexpansive mappings by the
CQ hybrid method in Banach spaces, Our results improve and extend the
corresponding results announced by Xiaolong Qin, Yeol Je Cho, Shin Min
Kang [Xiaolong Qin, Yeol Je Cho, Shin Min Kang, Convergence theorems of
common elements for equilibrium problems and fixed point problems in Ba-
nach spaces, Journal of Computational and Applied Mathematics 225 (2009)
20-30], P. Kumam, K. Wattanawitoon [P. Kumam, K. Wattanawitoon, Con-
vergence theorems of a hybrid algorithm for equilibrium problems, Nonlin-
ear Analysis: Hybrid Systems (2009), doi:10.1016/j.nahs.2009.02.006], W.
Takahashi, K. Zembayashi [W. Takahashi, K. Zembayashi, Strong conver-
gence theorem by a new hybrid method for equilibrium problems and rela-
tively nonexpansive mappings, Fixed Point Theory Appl. (2008) d0i:10.1155
/2008/528476) and others therein. .
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1. Introduction

Let E be a real Banach space, E* the dual space of E. let C be a nonempty
closed convex subset of E. Let f be a bifunction of C' x C into R, where R is the
set of real numbers. The equilibrium problem for f: CxC — Ristofind z € C
such that

f(z,y) >0 for all y € C. (1.1)

The set of solutions of (1.1) is denoted by EP(f). Given a mapping T : C —
H, let f(z,y) = (Tz,y — z) for all z,y € C. Then, z € EP(f) if and only if
(Tz,y—z) >0forally € C, i.e., z is a solution of the variational inequality.

Received April 20, 2009. Accepted October 29. 2009. *Corresponding author.
© 2010 Korean SIGCAM and KSCAM .

783



784 Ziming Wang, Yongfu Su

Equilibrium problems which were introduced. by Blum and Oettli [1] in 1994
have had a great impact and influence in the development of several branches of
pure and applied sciences. It has been shown that the equilibrium problem theory
provides a novel and unified treatment of a wide class of problems which arise in
economics, finance, physics, image reconstruction, ecology, transportation, net-
work, elasticity and optimization. Numerous problems in physics, optimization,
and economics reduce to find a solution of (1.1). Some methods have been pro-
posed to solve the equilibrium problem; see, for instance, [2-7] and the references
therein. '

Recall that the mapping T of C' into H is said to be nonexpansive if

|Tz —Ty|| < ||z -yl forall z, y € C.

We denote by F(T') the set of fixed points of T'; that is, F(T) = {x € C : Tz = z}.
Recently, many authors studied the problem of finding a common element of
the set of fixed points of a nonexpansive mapping and the set of solutions of
an equilibrium problem in the framework of Hilbert spaces and Banach spaces,
respectively, see for instance, [4, 8-12, 16-18] and the references therein.
In 2004, Matsushita and Takahashi [10] introduced the following iteration: a
sequence {z,} defined by

Tptl = HCJ_I(anJ:cn + (1 - an)JTzy), (1.2)

where the initial guess element zg € C is arbitrary, {a,} is a real sequence in
[0,1], T is a relatively nonexpansive mapping and Il denotes the generalized
projection from E onto a closed convex subset C' of £. They prove that the
sequence {z,} converges weakly to a fixed point of T

Later, many authors studied the problem of finding a common element of
the set of fixed points of a relatively nonexpansive mapping or two relatively
nonexpansive mappings and the set of solutions of an equilibrium problem in the
framework of Banach spaces. see, for instance, [11-13, 16, 18| and the references
therein.

In 2009, Xiaolong Qin, Yeol Je Cho, Shin Min Kang [12] proposed the following
modification of iteration (1.2) for two hemi-relatively nonexpansive mappings
(Called quasi-¢-nonexpansive mapping in [12] ):

(g € E chosen arbitrarily,

C, =0C,
Ir1 = Hclxo, .
\Un = J_'l(aann + BnJ Tz, + 7nJS$n)a (13)

un € C such that f(un,y) + ;1—<y — Up, Jun — Jyn) >0, Yy € C,
Cn+1 = {Z cCp: ¢(za un) < ¢(z7 wn)}’

\$n+l = H('V)H—l T
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where J is the duality mapping on E, and Il is the generalized projection from £
onto a closed convex subset C of E and proved that the sequence {x,} converges
strongly to Ilpzo, where F = F(S)N F(T)N EP(f).

Recently, Poom Kumam, Kriengsak Wattanawitoon [16], introduced the mod-
ification for two hemi-relatively nonexpansive mappings as follows:

(2o € C chosen arbitrarily,

yn = J HanJzn + (1 — ay)JSz,),

4 Zn = J_l(Bann + (1 - ﬁn)JTxn)a

u, € C such that f(un,y) + %(y — Uy, Jun — Jyn) >0, Yy e,
Cnt1 = {2 € Cp : ¢(2,un) < ¢(2,20)},

\mn—i—l ch+1

(1.4)

they also proved that the sequence {z,} converges strongly to Ilpzo, where
F=F(S)NF(T)NnEP(f). |

Motivated and inspired by the research going on in this direction, we introduce
a hybrid projection algorithm to find a common element of the set of solutions
of an equilibrium problem and the set of common fixed points of three hemi-
relatively nonexpansive mappings by the monotone CQ hybrid method in the
framework of Banach spaces.

2. Preliminaries

Let E be a real Banach space with norm | - || and let E* be the dual of E.
Denote by (-, -) the duality product. The normalized duality mapping J from E
to 27 is defined by

Jz = {z* € E* : (z,2*) = |=]|* = ||l=*||*},

forxz € E.

Let E be a smooth, strictly convex, and reflexive Banach space and let C be
a nonempty closed convex subset of E. Throughout this paper, we denote by ¢
the function defined by

$(x,y) = [|lz|* - 2(z, Jy) + [lyll”
for all z,y € E. The generalized projection Ilc : F — C is a mapping that

assigns to an arbitrary point € F, the minimum point of the functional ¢(y, x),
that is, [Icx = T, where Z is the solution to the minimization problem

#(z,z) = ‘Jé:iél ¢y, z),

existence and uniqueness of the operator Il follow from the properties of the
functional ¢(z,y) and strict monotonicity of the mapping J (see, for example,
[11]). It is observe from the definition of the function ¢ that it has the properties

as follows:
o(Jlyll = llz)? < ¢y, z) < (llyll + ll=])?,
od(z,y) = ¢z, 2) + d(z,y) + 2(x — 2, Jz — Jy),
+

.¢($,y) = (CU,JCL'— Jy) (y_xa Jy> S ”33“”‘]37_' Jy” + ”y'—x”“y!la
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for all z,y € E, see[19] for more details. If E is a Hilbert space, then ¢(z,y) =
lz = ylI*.

Remark 2.1 If E is a strictly convex and smooth Banach space, then for z,y € E,
é(z,y) = 0 if and only if z = y. It is sufficient to show that if ¢(z,y) = 0, then
z = y. From (1'), we have ||z|| = ||ly||, this implies (y, Jz) = ||ly||* = ||Jz||*>. From
the definition of J, we have Jx = Jy. Since J is one to.one, we have x = y. see
[20,21] for more details. |

Let C be a closed convex subset of E, and let T be a mapping from C into itself.
A point p in C is said to be an asymptotic fixed point of T, if C' contains a sequence
{,} which converges weakly to p such that the strong lim, (2, — Tx,) = 0.
The set of asymptotic fixed points of T' will be denote by ﬁ(T ). A mapping T
from C into itself is called nonexpansive if ||Tz—Ty|| < ||z—y]| forall z,y € C and
relatively nonexpansive [10, 11, 19] if F(T) = F(T) and ¢(p, Tz) < ¢(p,x) for
all z € C and p € F(T). The asymptotic behavior of a relatively n onexpansive
mapping was studied [10, 11, 19]. A point p in C is said to be a strong asymptotic
fixed point of T if C contains a sequence {x, } which converges strongly to p such
that limy—oo(®n — Txy) = 0. The set of strong asymptotic fixed points of T' will
be denoted by F (T'). A mapping T from C into itself is called relatively weak
nonexpansive if F(T) = F(T) and ¢(p, Tx) < ¢(p, z) for all z € C and p € F(T).
A mapping T is called hemi-relatively nonexpansive if ¢(p,Tz) < ¢(p,z) for all
z € C andpe F(T).

It is obvious that a relatively nonexpansive mapping is a relatively weak non-
expansive mapping. and a relatively weak nonexpansive mapping is a hemi-
relatively nonexpansive mapping.

A Banach space E is said to be strictly convex if || < 1 for all z,y € E
with ||z|| = ||y|| = 1 and z # y. It is said to be uniformly convex if lim, oo || —
yn|| = 0 for any two sequences {z,}, {yn} in E such that ||z,| = |lyn| = 1 and
lim, o0 || 22522 || = 1. Let U = {z € E : ||z|| = 1} be the unit sphere of E, then
the Banach space E is said to be smooth provided

ety ~
t—0 t

exists for each z,y € U. It is also said to be uniformly smooth if the limit is
attained uniformly for z,y € U.

It is well known that if F is smooth, then the duality mapping J is single
valued. It is also known that if E is uniformly smooth, then J is uniformly
norm-to-norm continuous on each bounded subset of F, more properties of the
duality mapping have been given in [20, 21].

We also need some definitions and lemmas which will be used in the proofs
for the main results in the next section.

Lemma 2.1([19]). Let E be a uniformly convex and smooth Banach space and
let {yn},{zn} be two sequences of E. If ¢(yn, zn) — 0 and either {y,} or {z,} is
bounded, then y, — z, — 0.
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Lemma 2.2([22]). Let C be a nonempty closed convexr subset of a smooth real
Banach space E and x € E, then, xo = llcx if and only if

(xo —y,Jx — Jxo) >0

Lemma 2.3(Alber[26]). Let E be a reflexive ,strictly convex and smooth Banach
space, let C' be a nonempty closed convex subset of E and let x € E, then

¢(y, Uez) + d(Ilcz, z) < ¢(y, )
forally e C.

Lemma 2.4([12]). Let E be a strictly conver and smooth real Banach space, let
C be a closed convex subset of E, and let T be a hemi-relatively nonexpansive
mapping from C into itself. Then F(T) is closed and convex.

Lemma 2.5([23])). Let X be uniformly convex Banach space and B.(0) = {z €
E : ||z|]| € r} be a closed ball of X. Then there exists a continuous striétly
increasing convez function g : [0,00) — [0, 00) with g(0) = 0 such that

| 1Az + py + 2] < Nlzll* + pllyll +A12l1° = Mgz — yll)
for all z,y,z € Br(0) and A\, u,y € [0,1] with A+ p+v=1.

Lemma 2.6 ([19])). Let E be uniformly convex Banach space and letT > 0. Then

there exists a strictly increasing, continuous and convex function g : [0,00) —
[0, 00) with g(0) =0 and g(l|z — yll) < ¢(z,y) for all z, y inB;.

For solving the equilibrium problem for a bifunction f : C x C — R, let us
assume that f satisfies the following conditions:

(A1). f(z,z) =0, for all x € C;

(Az). f is monotone, i.e., f(z,y) + f(y,z) <0, for all z,y € C;
- (As). For each z,y,z € C, lim¢)o f(tz + (1 — t)z,y) < f(z,y);

(A4). For each z € C, the function y — f(z,y) is convex and lower semicon-
tinuous.

Lemma 2.7([1]). Let C be a nonempty closed convex subset of a smooth, strictly
convez, and reflexive Banach space E, let f : CxC — R be a bifunction satisfying
(A1) — (A4). Let 7 >0 and x € E, then, there exists z € C such that

1
oz, y) + ;(y —2,Jz—=Jz) >0, forall yecC. (2.4)

Lemma 2.8([24]). Let C be a nonempty closed convex subset of a uniformly
smooth, strictly convex, and reflexive Banach space E, and let f : C x C — R
be a bifunction satisfying (A1) — (A4). Let r > 0 and = € E, define a mapping
T.: E— C as follows:

1
Tre={z€C: fzy) + (y-2Jz-Jz) 20, Wy € C} (2.5)

for all z € C. Then, the following hold:
1. T 1s single-valued;
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2. T, is firmly nonexpansive, i.e., for any z,y € H,
(Trx — Ty, JTox — JTy) < (Trx — Ty, Jx — Jy);

3. F(T,) = EP(f);
4. EP(f) is closed and conver.

Lemma 2.9([25]). Let C be a closed convex subset of a smooth, strictly convex
and reflexive Banach space E, let f : C x C — R be a bifunction satisfying
(A1) — (A4) and let 7 > 0. Then for x € E and q € F(T;),

¢(q, Trz) + ¢(Trz, z) < ¢(g, ).

3. Main results

In this section, we establish strong convergence theorem for equilibrium prob-
lems and fixed point problems of three hemi-relatively nonexpansive mappings
which are more general than relatively non-expansive mappings in Banach spaces.

Theorem 3.1. Let E a uniformly convex and uniformly smooth real Banach
space, let C' be a nonempty and closed convex subset of E. Let f be a bifunction
from C x C to R satisfying Ay — As and let T, S, W : C — C are closed hemi-
relatively nonexpansive mappings such that F := F(S)TNF(T)NF(W)NEP(f) #
0. Let {z,} be a sequence generated by the following manner:

(24 € C chosen arbitrarily,

C1=0C,

z1 = Il¢, zo,

Yn = J HanJzn + (1 — an)JT2,),

2 = J Y B Iz, + B2 ST, + B3IWa,),

un € C such that f(un,y) + i(y = Un, Jun — Jyn) >0, VyeC,
Cnt1={z € Cp: d(z,un) < ¢(z,24,)},
| Znt+1 = e, To,

(3.1)

where J is the duality mapping on E. Assume that o, and 3, wherei =1,2,3
are four sequences in [0, 1] satisfying the restrictions:

(CL) ﬂylz + 18721 + 53 =1, limp 0 ;Br% = lim, 57?{ =0,

(b) liminf, eo(l — @n)B: 62 > 0, limsup,,_, o, @y < 1;

(¢) {rn} C [a, ) for some a > 0.

If T is uniformly continuous, Then {x,} converges strongly to lpxy, where
I1F is the generalized projection of E onto F := F(SYTNF(T)NF(W)NEP(f).

Proof. First, we show that C),, is closed and convex for all n > 0. It is obvious
that C; = C is closed and convex. Suppose that C} is closed and convex for
some k € N. For all z € C}, one obtains that

¢(Z, U};) S ¢(Z, l‘k)
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is equivalent to
2((2, Jor) — 2(z, Jux)) < llowl? = fluxl®.

It is easy to see that C..; is closed and convex. Then, for all n > 1, C), is closed
and convex. This shows that Il¢,_ , zo is well defined.

Next, we show that F C C, for alln > 0. F C C, = C is obvious. Suppose
F c C; for some k € N. Notice that u,, = T} y, for all n > 0, On the other
hand, from Lemma 2.8, one has 7, is a hemi-relatively nonexpansive mapping.
Then, for Vp € F C C}, one has

o(p, ur) = ¢(p, Tr,yk)
< ¢(p, yk)
= ¢(p, J " HonJzi + (1 — ar)JTz)) ||
= |Ip||2 = 2(p, arJzi + (1 — ap)JTz1) + lloawJzr + (1 — ap) JT 2 ||
< Pl = 2(p, arJzr, + (1 — o) ITzi) + age|| Tk || + (1 — ag)[| T2k
= ard(p, xk) + (1 — ar)d(p, Tzx) | |

< ard(p, zk) + (1 — ) d(p, 2k)
(3.2)

and then
é(p, zx) = ¢(p, J ' (B Jxk + B Szx + By JWzk))
= llpll* = 2Bk (p, J=r) — 263(p, JSzx) — 2B} (p, W k)
+ |8 T2k + B Sz + B I W
< lpll* = 2Bk (p, Jzk) — 283 (p, JSwi) — 2Bi(p, IW ) (3.3)
+ Bl Tzl + Bl JSzk|® + Bl W]
= Bid(p, zx) + Bid(p, Sxr) + B T Wi |?
< ¢(p, k)
Substituting (3.3) into (3.2), one has

@(@7 uk) < ak¢(p= xk) + (1 - ak)é’(pa lek) < ¢(p7 (Iik), ‘ (34)

that is p € C,41. This implies that F C C,,, for alln > 0.
From z, = IlI¢, o, one sees

(xn — 2, Jzg — Jzn) >0 V 2 € Cp. (3.5)
Since F' C C,, for all n > 0, one arrives at
(zn —p,Jz0 — JT0) 20 VpEF. (3.6)

From Lemma 2.3, one has

¢($7M lE()) = (b(HC{»xme) < ¢(p7 3:0) - ¢(p9 IL‘n) < Qs(pa CC()), C (3'7)
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for each p € F C C, and n > 1. Therefore, the sequence ¢(zn,xp) is bounded.
On the other hand, noticing that z, = Il¢,zy and z,41 =g, g € Cpy1 C
C,, one has

¢(xn,z0) < F(Tnt1,T0), (3.8)

for all n > 0. Therefore, {¢(x,,x0)} is nondecreasing. It follows that the limit
of {¢(zn,x0)} exists. By the construction of C, one has Cy,, C C,, and z,, =
e, zo € C, for any positive integer m > n. It follows that

A Tm, Tn) = ¢(zm, e, z0)
< ¢(xm, o) — ¢(llc, To, o) (3.9)
= ¢(.’L‘m,$0) - ¢(xna 330).

One has ¢(xp,,z,) — 0, as m, n — oo in above inequality. It follows from
Lemma 2.1 that

Tm —Zn — 0, asm, n— o0.
Hence {z,} is a Cauchy sequence. Since E is a Banach space and C is closed

and convex, one can assume that =, — ¢ € C as n — oo. Similar to (3.9), by
analogy, one can obtain

nango d(ZTpt1,2n) =0. (3.10)
From Lemma 2.2, we get

lim ||zp41 —2,]] = 0. (3.11)

n—o

Noticing that z,,41 € C),+1, we obtain
H(Tn+1, Un) < A(Tnt1, Tn) (3.12)
It follows from (3.10) that
qﬁ(xn;l, up) — 0, asn— oo.
From Lemma 2.1, one has

Tim [lonss =l = 0. (3.1

Combining (3.11) whit (3.13), one gets
lim ||zn —un|| = 0. (3.14)

00

It follows from z,, — q as n — oo, that u, — q as n — oo.
On the other hand, since J is uniformly norm-to-norm continuous on bounded
sets and lim, ||z, — u,|| = 0, one has

lim ||Jz, — Ju,|| = 0. (3.15)

, Since E is a uniformly smooth Banach space, one knows that E* is a uniformly
convex Banach space. Let r = sup,>o{llzall, [Tz, [Sznll, [Wz,l}. From
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Lemma 2.5, one has

¢(D, 22) = ¢(p, T HBL Tz + Br T Szp + BT W )
= [lpl|* — 285 (p, Jzn) — 282(p, JSTs) — 203, (p, IWzn)
+ |BE Tz, + B2 ISz, + ﬁiJWmn||2
< |pll* = 26 (p, Jzn) — 263 (p, JSzn) — 26, (p, JW )
+ B Tznl|® + BN TSznl|? + Bl IWanl|* = BaBrg(|JSzn — Jzall)
= Brd(p, zn) + B2d(p, STn) + Bl TWznl|* — B Bag (I S2r — Tz )

< ¢(p, zn) = BaBrg(lJSzn — Jznl))

(3.16)
and
o(p, un) = 00, Tr, yn) < (P, yn) (3.17)
< and(p, Tn)+ (1 - an)0(p, zn).-
Substituting (3.16) into (3.17), one has
¢(pa un) < an¢(pa xn) + (1 — an)(¢(pa :Bn) - Brlugrzzg(”‘]‘sxn - an”)) (318)

< ¢(p, 2n) — (1 — @n)BrBrg(|JSzn — Jzul).
It follows that

(1 = an)BrBrg(|JSzn — Jzn|) < ¢(p, Tn) — B(p, n)- (3.19)
On the other hand, one has
(0, 2n) = (0, un) = [lnl* = lunll® = 2(p, J2n = Jun)
< Alzn — unll(lzall + llunlD) + 2lplJZn — Jual.
It follows from ||z, — un|| — 0 and ||Jz, — Juy| — 0 that
¢(p,zn) — d(p,un) = 0 asn — . (2.20)

Observing the assumption lim inf, . (1 — a,)BL 6% > 0, (3.19) and (3.20), one
has

g(|JSzp — Jzr]|) = 0, asn — oo.
It follows from the property of g that
|JSzy — Jxp|]| = 0, asn— oco.
Since J~! is also uniformly norm-to-norm continuous on bounded sets, one sees

that

lim ||z, — Sz,|| =0.
n—oo

By the same analogy, one can obtain

lim ||z, — Wz,|| =0.

n—0o0
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From the closedness of S and W, one has ¢ € F(S) N F(W). One obtain
¢(ZTn+1) 2n)
= ¢(@ny1,J(BrTTn + BaJ ST + B3 IWxy))
= |Tnt1ll* = 2(@ns1, B Tn + BT S + oI W)
+ 1B T Tn + B2 T STy + B TW Ty |? (3.21)
< N@ns1ll® — 281 (Tnt1, JTn) — 282 (Tnt1, JSTr) — 282 (Tnt1, IWT,)
+ BallJzall? + BT Szn|® + By | TW zn|?
= BL6(@ns1,70) + B 6@ns1, 57) + B30 i1, W),

Since lim, oo 82 = limpoo 32 = 0, limy—oo ¢(Tni1,Zn) = 0 and {z,} is
bounded, therefore, ¢(z, 41, 2,) — 0, as n — o00. Since z,41 = Il¢,,, 2o € Cpy1,
from (3.2) and (3.3), one has

H(Trt1;Un) < H(Tnt1,Yn) < H(Tni1, Tn),

for all n > 0. Hence ¢(xp+1,yn) — 0, as n — oo. By using Lemma 2.1, one also
has :

im ||Znt1 —ynll = lim ||Zn41 —zp]| = lim |[Zpq1 — 20]| =0 (3.22)
n-—oo n—oo n—00 '
Since J is uniformly norm-to-norm continuous on bounded sets, one has

lim ||[Jzpy1 — Jyn| = nlin;g”]&:n“ —Jz,| = nlirglo |Jzns1 — Jzn|| =0 (3.23)

n—aoo

Observing that
[J&nt1 = Jynll = [V Zn41 — (andzn + (1 — an)JT20) ||
= |lan(Jznt1 — Jzn) + (1 — ap)(Jops1 — JT2,)||
= |(1 = an)(Jznt1 — JT2n) — an(Jzn — JTni1)||
> (1= a)||[Jzns1 = ITzn|| — anl||Jzn — JThial|.
It follows that

1
|Jznt1 — JTz| < 1

_an

([ JZng1 = Jynll + anl|Jzn — JZngal)).

By (3.23) and limsup,,_, ., an < 1, one sees lim, oo [|JZn+1 — JT 2, || = 0. Since
J~1 is uniformly norm-to-norm continuous on bounded sets, one has

lim [|zp41 — T2, =0. (3.24)

n—oo
Since
| Izn — Znll < ll2n = Zniall + [|2n41 — 24,
in view of (3.22), one obtain
lim ||z, — 2] = 0. (3.25)
By using the triangle inequality, we get
|Zn = Tznll < |20 = Znsa|l HllZn1 — Tzall + | T20 — Txn|,
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since T is uniformly continuous, it follows from (3.22), (3.24) and (3.25) that
limy, oo ||Zn — T, || = 0. Since T is also closed operator and z, — ¢, then g is
also a fixed point of 7. Hence ¢ € F(T)N F(S) N F(W).

Next, we show q € EP(f) = F(T,). From u, = T;,y» and Lemma 2.9, one
obtains

¢ (Uns Yn) = O(Tr, Yn, Yn) < 6(q,yn) — 6(a, Tr, Yn)
< ¢(g, zn) — 9(qs Tr, yn)
= ¢(q, Tn) — #(q, un).

It follows from (3.20) that ¢(un,yn) — 0, as n — oco. Noticing that Lemma 2.1,
we get

lun — yull = 0, asn— oo.

Since J is uniformly norm-to-norm continuous on bounded sets, we obtain

lim ||Ju, — Jyn|| = 0.
n—od

From the (As), we note that

Jun, — Jyn 1
“y_un” ” Y ” 2> r(y—umjun—(]yn>

Tn
2 _f(unyy)
> fly,un), VyeC.

By taking the limit as n — oo in above inequality and from (A44) and u, — g,
one has f(y,q) <0,Vy e C. For0<t <1 and y € C, define y, = ty + (1 — t)g.
Noticing y, g € C, we obtain y; € C, which yields that f(y;,q) < 0. It follows
from (A;) that

0= flys, ye) < tf(ye,v) + (1 =) f(vs,9) < tf(ye, ).

It follows that f(y:,y) > 0. Let ¢t | O from (A3z), we obtain f(q,y) > 0 for Vy € C.
This implies that ¢ € EP(f). This shows that g € F.

Finally, we prove q = Hpxo.

By taking limit in (3.6), one has

(g—p,Jzo—Jg) >0, VpeF.
In view of Lemma 2.2, one sees that ¢ = IIpxg. This completes the proof. O

According to Theorem 3.1, one can obtain the following corollaries directly.

Corollary 3.2. Let E a uniformly convex and uniformly smooth real Banach
space, let C' be a nonempty and closed convex subset of E. Let f be a bifunction
from C x C to R satisfying Ay — Ay and let T, S : C — C are closed hemi-
relatively nonezpansive mappings such that F .= F(S)T N F(T)N EP(f) # 0.
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Let {z,} be a sequence generated by the following manner:

(20 € C chosen arbitrarily,

Ci=0C,

z1 = Il¢, o,

Yn = J HanJzn + (1 — an)JTz,),

zn = J Y BrJzn + (1 = 8,)JSzy),

up € C such that f(un,y) + 7=y = un, Jun — Jyn) 20, VyeC,
Cn+1 = {Ze Cn : ¢(zaun) < qﬁ(z,a:n)},

(Zn+1 = e, 4, Zo,

(3.1)

where J is the duality mapping on E. Assume that o, and B, are two sequences
in [0, 1] satisfying the restrictions:

(@) imy o0 B = 1, limsup,, _, . an < 1;

(0) liminf, oo (1 — @n)Bn(l — Bn) > 0,

(c) {rn} C[a,o0) for some a > 0.

If T is uniformly continuous, Then {x,} converges strongly to llpxo, where
IIr is the generalized projection of E onto F := F(S)T N F(T)N EP(f).

Remark 1. Corollary 3.2 is the same as Theorem 3.1 in Poom Kumam, Kriengsak
Wattanawitoon [16], so it is a special case in our Theorem 3.1.

Corollary 3.3. Let E a uniformly convex and uniformly smooth real Banach
space, let C' be a nonempty and closed convex subset of E. Let f be a bifunction
from C x C to R satisfying A1 — Ag and let T, S : C — C are closed hemi-
relatively nonezpansive mappings such that F := F(S)T N F(T) N EP(f) # 0.
Let {x,} be a sequence generated by the following manner:

(z9 € E chosen arbitrarily,

C1=C,

z1 = ll¢, xo,

S yn = J HanJzn + BnJTThn + ¥ JSt1),

un € C such that f(u,,y) + %(y — Up, JUn — JYn) >0, YyeC,
Cnt1 = {2 € Cp : ¢(2,un) < é(2,0)},

\ wn—f—l = ch+1 CL'()

where J is the duality mapping on E. Assume that o, B, and v, are three
sequences in [0, 1] satisfying the restrictions:

(a) an+ B+ =1

(b) iminf, o @pB, > 0, liminf, . oy, > 0;

(¢) {rn} C [a,o0) for some a > 0.

Then {z,} converges strongly to Ilpzg, where Ilr is the generalized projection
of E onto F := F(S)TNF(T)N EP(f).

Proof. Put a, = 0 and T = I in Theorem 3.1, we can get the result directly. (I
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Remark 2. Corollary 3.3 is the main result in Xiaolong Qin, Yeol Je Cho, Shin
Min Kang [12], so it is also a special case in our Theorem 3.1.

Remark 3. Our Theorem 3.1 have improved and extended many prevenient
results, whereat, we cannot list them all.
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