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GLOBAL ASYMPTOTIC STABILITY OF A SECOND ORDER
RATIONAL DIFFERENCE EQUATION

R. ABO-ZEID

ABSTRACT. The aim of this paper is to investigate the global stability, pe-
riodic nature, oscillation and the boundedness of solutions of the difference

equation
A+ Bz,

C + Dz?%
where A, B are nonnegative real numbers and C, D > 0.

Tn4l = ,n=0,1,2,...
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1. Introduction and Preliminaries

Difference equations, although their forms look very simple, it is extremely
difficult to understand thoroughly the global behaviors of their solutions. One can
refer to [5, 4]. The study of nonlinear rational difference equations of higher order
is of paramount importance, since we still know so little about such equations. It
is worthwhile to point out that although several approaches have been developed
for finding the global character of difference equations [4, 6, 7], relatively a large
number of difference equations have not been thoroughly understood yet [3, 8, 10].

C.H.Gibbons et all [2] 1nvest1gated the global asymptotic behavior of the dif-
ference equation

o+ fxy,- 1
=/l n20,1,2,. .. 1
s e, " &

where 8 > 0 and a,v > 0.
In [5] the global asymptotic behavior of the difference equation
Az, _y

Tna1 = =221 —0,1,2,...
" B+ Cz?
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was discussed, where A, B,C are nonnegative real numbers and the initial con-
ditions x_1, zg are nonnegative real numbers.
In this paper, we study the global asymptotic stability of all solutions of the
difference equation
z _
where A, B are nonnegative real numbers and C, D > 0.
we give some preliminaries which will be needed in this paper.

Let I be a real interval and let f : I x I — I be a continuous function. For
every pair of initial conditions {(z_1,z¢) € I x I, the difference equation

,n=0,1,2,..~. (2)

ITn+1 = f(xnax'n—l)a n= 0711"' (3)

has a unique solution {z,}52_;. An equilibrium point of equation (3) is a point
z € I with z = f(Z, %).
Definition 1.1. Let Z be an equilibrium point of equation (3).

(1) z is stable if for every ¢ > 0,34 > 0 such that for any initial conditions
(x_1,z0) € Ix I with|2_1 —Z |+ |xo—Z |<6,| ®p — T |< € holds for
n=12,...

(2) Z is a local attractor if there exists v > 0 such that x,, — % holds for any
initial conditions (x_1,xo) € I'x I with |z_1 —Z | + | 2o — T |< 7.

(3) Z is locally asymptotically stable if it is stable and is a local attractor.

(4) Z is a global attractor if z,, — Z holds for any (x_1,z¢) € I x I.

(5) Z is globally asymptotically stable if it is stable and is a global attractor.

(6) Z is a repeller if there exists v > 0 such that for each (z_1,z0) € I x I

- with |1 —Z | + | o — Z |< 7, there exists N such that | zy — Z |> 7.

(7) Z is a saddle point if it is neither a local attractor nor a repeller."

Assume that Z is an equilibrium point of equation (3). Let r = é)gTii’) and

§ = %—f—@’j@. Then the linearized equation associated with equation (3) about the
equilibrium Z is

Zntl — TZn — 82p—1 = 0. (4)
The characteristic equation associated with equation (4) is

M —rA=s5=0. (5)

Theorem 1.2. (The linearized stability theorem [6]).
(1) If | r|<1—s<2, then T is locally asymptotically stable.
(2) If|r|<|1—s| and | s |> 1, then T is a repeller.
(3) If [r [>| 1 —s | and r? 4+ 45 > 0, then T is a saddle point.

Now we give the definitions for the positive and negative semicycle of a solu-
tion of equation (3) relative to an equilibrium point Z.
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Definition 1.3. [8] A positive semicycle of a solution {z,}52 _; of equation (3)
consists of a "string” of terms {z;, /41, ... ,Zm}, all greater than or equal to the
equilibrium Zz, with [ > —1 and m < oo and such that

either {=—-1, orl>-landz;_1<Z
and

either m = 00, orm < oo and z,,+1 < Z.

Definition 1.4.[8] A negative semicycle of a solution {xy};2._1 of equation (3)
consists of a ”string” of terms {x;,Z;41,...,%m}, all less than or equal to the
equilibrium Zz, with [ > —1 and m < oo and such that

either [=—-1, orl>-landzx;_1>%
and

either m = 0o, orm < oo and z,,41 2> T.

Theorem 1.5. [8] Assume that f € C[(0,00) X (0,00), (0,00)] is such that:
f(z,y) is decreasing in x for each fized y, and f(z,y) is increasing in y for each
fixed z. Let T be a positive equilibrium of equation (8). Then except possibly for
the first semicycle, every solution of equation (8) has semicycles of length one.

Theorem 1.5. [9] Let Z be an equilibrium point of the equation

: Tnt1 = f(Tn).
Suppose that f € C*(R) and f'(Z) = —1.

(1) If =3(f"(z))® = 2f"(x) < 0, then T is locally asymptotically stable.
(2) If =3(f"(z))* = 2f"(z) > O, then T is unstable.

2. Linearized stability analysis

Consider the difference equation
A+ Bz,
C + Dx?

where A, B are nonnegative real numbers and C, D > 0. The change of variables

Tn+l = ,n=0,1,2,..;

Ty = ,/%yn reduces equation (2) to the difference equation

P+ qQYn—-1

T n=01,2,... (6)

Yn+1 =

where p = %\/%, q= g. Now we determine the equilibrium points of equation

(6) and discuss their local asymptotic behavior. It is clear that the values of the
equilibrium points depends on p and gq.

The equilibrium points of equation (6) are the zeros of the function f(y) =
7>+ (1—q)J —p. When g < 1, then equation (6) has a unique equilibrium point 7,
such that § > /T—qifp>2(1—¢)2 and 0 < § < /T —qifp < 2(1—q)%. When
q > 1, then equation (6) has a unique positive equilibrium point § > /g — 1 if
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p > 2(‘15—1)% and three equilibrium points § > /¢ — 1, —4/ q—g—l <7 < 0 and
_ -1 . 1.3
—Va—1<p < —/5 if p<2(%2)E.

The linearized equation associated with equation (6) about 7 is

2y q
zn+1+1+g27«'n—1—+—y—22n_1=0 ,n=20,1,2,... (7)
The characteristic equation associated with this equation is

» 27° q
A2 A — = 0. 8
T T ®)

We summarize the results of.this section in the following theorem.

Theorem 2.1.
(1) Assume that ¢ < 1 and let 3 be the unique positive equilibrium point of
equation (6). Then
(a) 7 is locally asymptotically stable if p < 2(1 — q)
(b) 7 is a saddle point if p> 2(1 — q)%.
(c) § is nonhyperbolic point if p = 2(1 — q)%
(2) Assume that ¢ > 1. Then
(a) The unique positive equilibrium point of equation (6) is a saddle
point.
(b) If p < 2(‘1—3—1)% then y1 s a repeller and y2 is a saddle point.

(c) Ifp = 2(-‘1—3—1)%, then 1 = o = —\/gg—l are unstable equilibrium

3
2

points.
— ___L —_ 9 _
Proof. Let r = T2 and s = T

(1) Assume that ¢ < 1 and let § be the unique positive equilibrium point of
equation (6). Then

27° 27> 1+y°— g2 —1
(a’) | r l -(1 - 8) = -1-:}%'}—2. - (1 - 1.{?@2):1.3@2 - T.Z:.QQQ =y1+gjq <0

when p < 2(1 — q)%

=2 =2 3
(b ) 7| —]1=s|= & 1+y 1'{”}1@2‘1 =y1+;’q > 0 when p > 2(1 — q)2.
It is easy to show that equation (7) has the root A = —1 and other
y

root with modulus less than one.
(2) Assume that ¢ > 1. Then

1+'"2— G2—1 . _
@) |[r|—|l-s|=2 ey R e =y1+g+fq > 0, since § > /¢ — 1 and
r?2 4+ 4s > 0. . B
(b) It is clear that | 1 — s |= | %# = ———r“ffy_l_q, since 0 > 77 >

- -2 =
— 5 > -Vg-1. Thenlrl—|1—8|=1i+;—?2—(—1“ffo)

%1%— < 0. Moreover, we have | s |= 1+y z > 1
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72 — . =
Now for 32, we have | r | — | 1 -5 |= W > 0, since y2 <
—\/9-5—1. Moreover, we have r? + 4s > 0.
(c) Ifp=2(%2)3, then i = o = —y/ 921, We can show that equation

(8) with ¥ =41 = 72 = —/ q—g—l— has the root A = 1 and other root
with modulus greater than one.
The proof is complete in view of theorem (1).

O
3. Periodic nature

Theorem 3.1. Equation (6) has the periodic solution ..., @, Y, ¢, 9, ... where
@,y are the roots of the equation

1
2 ——t—g+1=
+q-1 q+ 0
if either g < 1 cmdp>2(1-—q)% orq>1.

Proof. Let {...,p,v,¢,%,...} be a periodic solution of equation (6) with ¢ < 1.

This implies that p = %’%@,1}) = 1‘—1’}‘%}. Hence we have, ptp =1 —qgand ¢+ ¢ =

I%q" Therefore, o, are the roots of the equation
1
t? 4+ ——t—q+1=0.
+ 7—1 q-+
Now consider the discriminate L = (y2.)% — 4(1 — g). It is clear that L > 0 if
either ¢ > 1 or ¢ < 1 and p > 2(1 — ¢)3. O

4. Global behavior of equation (6)

Theorem 4.1. Assume that ¢ < 1 and p < 2(1 — q)%. Then the positive
equilibrium point 0 < § < /1 — q is globally asymptotically stable.

Proof. Let {yn,}52_, be a solution of equation (6). Then

P+ qYn—1
1+42

Then there exists a real number § > 0 such that y, < 8, n = -1,0,1,2,...
This implies that

Yn+1 = <p+qyn—1, n=0,1,2,....

P+ qYn—1 > D
1+ 2 1+ 62
Let A = liminfy, and A = limsupy,. Hence we have
p+gX p+gA
< AKAKL .
1+ A? sAsAs 1+ A2
This implies that p + gA < A+ AA% and A + AX? < p+ gA. Then

PA+ gA* < X7 4 A%A°

Yn+4+1 =
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and
A? + A%X2 < pA + gA2.

Then we get that

PA+ A (g—1) < pA+A%(g—1)
or

M(1—gq)—pA>A%(1—q) —pA (9)

Consider the function g(z) = (1 — ¢)z2 — pz. As p < 2(1 — ¢)%, we have

9(5i=g) < 0. Thatis 558— < § < /I = ¢, and g(z) is increasing on (204> 0)-
In view of equation (9), we have a contradiction. Therefore A = A = z. This
completes the proof. : O

5. Semicycle analysis

Theorem 5.1. Let {y,}52_; be a nontrivial solution of equation (6) and let §
denote the unique positive equilibrium of equation (6) such that either,

(C1) y—1 <§ <yo or

(C2) yo < <y-1. |
is satisfied. Then {yn,}oe_, oscillates about § with semicycles of length one.

Proof. The proof is a direct consequence using theorem (1). O

6. case ¢ =0

When ¢ = 0, equation (6) becomes

Yn+1 — ,n=0,1,2,... (10)

p
1442
It is clear that equation (10) has the unique positive equilibrium point 0 <
y<p.
Theorem 6.1.
(1) If p <2, then the equilibrium point § is locally asymptotically stable.
(2) If p > 2, then the equilibrium point § is unstable (saddle point).

Proof. 1t is sufficient to consider the linearized equation

2——2
- +-1~;ry?zn -0 ,n=0,1,2,...

and its associated characteristic equation

272

A =0.
+ 1+ 72

It is easy to establish the proof if p < 2 and p > 2. When p = 2 we can apply
theorem (1) and the result follows. a

Theorem 6.2. The following statements are true:
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(1) The subsequences {yan}2 o and {yan+1}oro are neither incredase together
nor decrease together. Moreover,
(a) Ifyo < ¥, Then {y2,}52, increases and {Yan+1}neqo decreases.
(b) Ifyo >y, Then {y2,}or, decreases and {yan+1}aeq increases.

(2) Assume that p < 2. Then the equilibrium point § is globally asymptoti-
cally stable.

(3) Assume that p > 2. Then equation (10) has the unique periodic solution
{..., 0,0, 0,%,...}, where ©,y are the roots of the equation

t2 —pt+1=0.

(4) Every solution of equation (10) oscillates about § with semicycles of
length one.

Proof. (1) The result follows from the equality

p(y2n+2 + ’y2n)

- (yz +2 — y2n)-
(1 + ygn)(l + y%n+2) "

Yon+3 — Yon+1 =

The proof of (2), (3) and (4) are easy to establish and will be omitted. O

Acknowledgments
Many thanks to Dr. Alaa E. Hamza for his help and support.

REFERENCES
1. R.P. Agarwal, Dfference equations and inequalities, First edition, Marcel Dekker, (1992).
. C.H.Gibbons, M.R.S.Kulenovi¢ and G.Ladas, On the recursive sequence £,41 = %,

10.

Math.Sci.Res.Hot-Line 4 (2) (2000) 1-11.

. E.A. Grove and G. Ladas, Periodicities in Nonlinear Difference Equations, Chapman and

Hall/CRC, 2005.

. V. L. Kocic, G. Ladas, Global Behavior of Nonlinear Difference Equations of Higher Order

with applications, Kluwer Academic, Dordrecht, 1993.

. A.E. Hamza, R. Khalaf-Allah, Dynamics of a second order rational difference equation,

BAMS, 23 (1), (2008) Golden Jubilee Year Volume, 206-214.

. V.L. Kocic, G. Ladas, Global attractivity in a second order nonlinear difference equations,

J. Math. Anal. Appl., 180 (1993) 144-150.
M.R.S. Kulenovic, G. Ladas, N.P. Prokup, A rational difference equation, Comput. Math.
Appl., 41 (2001) 671-678.

. M.R.S. Kulenovi¢ and G. Ladas, Dynamics of second order rational Difference Equations;

With Open Problems and Conjectures, Chapman and Hall/HRC Boca Raton, 2002.

. R.E.Mickens, Difference Equations,Theory and Applications 2”¢ Edition, Van Nostrand

Renhold,1990.
H. Sedaghat, Nonlinear Difference Equations, Theory and Applications to Social Science
Models, Kluwer Academic Publishers, Dordrecht, 2003.

R. Abo-Zeid received his Bsc from Ein-Shams University and Msc at Helwan University
under the direction of N. Fareid together with Zeinab Abd El-Kader. His Ph.D also at
Helwan University under the direction of Alaa E. Hamza together with Adel El-Tohamy.
Since 2007 He has been at Quassim University for one year and then O6 University. His
research interests focus on the qualitative behavior of solutions of the difference equations.



804 Abo-Zeid

Department of Basic Science, faculty of Engineering, October 6 university, 6t* of October
Governorate, Egypt.
e-mail: abuzead73@Q@yahoo.com



