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REPRODUCING KERNEL METHOD FOR SOLVING
TENTH-ORDER BOUNDARY VALUE PROBLEMS

FAZHAN GENG* AND MINGGEN CUI

ABSTRACT. In this paper, the tenth-order linear boundary value problems
are solved using reproducing kernel method. The algorithm developed ap-
proximates the solutions, and their higher-order derivatives, of differential
equations and it avoids the complexity provided by other numerical ap-
proaches. First a new reproducing kernel space is constructed to solve this
class of tenth-order linear boundary value problems; then the approximate
solutions of such problems are given in the form of series using the present
method. Three examples compared with those considered by Siddiqi, Twiz-
ell and Akram [S.S. Siddiqi, E.H. Twizell, Spline solutions of linear tenth
order boundary value problems, Int. J. Comput. Math. 68 (1998) 345-362;
S.8.Siddiqi, G.Akram, Solutions of tenth-order boundary value problems
using eleventh degree spline , Applied Mathematics and Computation 185
(1)(2007) 115-127] show that the method developed in this paper is more
efficient.

AMS Mathematics Subject Classification : 34K28, 34B05, 46E22, 47TB32.
Key words and phrases : Tenth-order, boundary value problems, repro-
ducing kernel method.

1. Introduction

Reproducing kernel theory has important application in numerical analysis,
differential equation, probability and statistics and so on [1-3]. Recently, us-
ing reproducing kernel theory, we discussed singular linear two-point boundary
value problem, singular nonlinear two-point periodic boundary value problem,
nonlinear system of boundary value problems, nonlinear Burgers equation and
ill-posed operator equations of the first kind [4-8]. In this paper, we consider the
following class of tenth-order linear boundary value problems in a reproducing
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kernel space

( Ly(z) =y (2) + b(z)y(z) = g(x),a <z < b,
y(a‘) = o, y(b) = Qq,
(@) = o,y () = B "
(2)(61) = 70, y(2)(b) : 71,
y(B)(a) = &o, y(s)(b) = &1,
L ¥ (a) = 50,9 (b) =<1,

<

where o, Gi, vi, &iy i, ¢ = 0,1 are finite real constants and b(x), g(z) are contin-
uous on [a,b].

Higher order differential equations arise in many fields e.g. when an infinite
horizontal layer of fluid is heated from below and a uniform magnetic field is
also applied across the fluid in the same direction as gravity under the action
of rotation, instability sets in. When instability sets in as ordinary convection,
it is modelled by a tenth-order boundary value problems. However, there are
few literature on the numerical solutions of tenth-order boundary value problems
and associated eigenvalue problems. Higher order boundary value problems were
researched in [9-16]. Wazwaz [10] presented a modified Adomian Decomposition
method for tenth-order and twelfth-order boundary value problems. Twizell
et al. [13,15] developed numerical methods for eighth, tenth and twelfth-order
eigenvalue problems arising in thermal instability and boundary value problems
with order 2m. Siddiqi and Twizell [9,16] gave the solution of sixth-order bound-
ary value problems and tenth-order linear boundary value problems using spline
technique. Siddigi and Akram [11,12] gave the solution of tenth-order linear
boundary value problems using non-polynomial spline technique and eleventh
degree spline.

In the present paper, we shall give the solution of Fq.(1) in the form of series
using reproducing kernel method. Through a simple transformation of function,
Eq.(1) can be converted into the form as follows:

[ Lu(z) = w19 (2) + b(z)u(z) = f(z),a <z < b,

u(a) =0,u(b) =0,

u'(a) = 0,u'(b) = 0,

) u(g()l()a) — O,«S:(%)(b) — 0, (2)
u®(a) = 0,u®)(b) = 0,

| u®(a) = 0,u® () =0,

where u(z) € Wla,b], b(z), f(x) are continuous on [a,b]. Therefore, to solve
Eq.(1), it suffices to solve Eq.(2).

This paper is arranged as follows. Some reproducing kernel spaces and cor-
responding reproducing kernel are constructed in Section 2. In Section 3, the
tenth-order linear boundary value problems are solved using reproducing ker-
nel method. In Section 4, numerical experiments are studied to demonstrated
the efficiency of the proposed method, and the results obtained using present
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method are compared with other methods. Results of experiments are discussed
and conclusion are included in Section 5.

2. Several reproducing kernel spaces

1. The reproducing kernel space W''[a,b]. The inner product space W'![a, b]
is defined as W'l[a,b] = {u'¥,i = 0,1, -,10 are absolutely continuous real
value functions, u'V € L?[a,b],u®(a) = 0,uD(b) = 0,5 = 0,1,2,3,4}. The
inner product in W”[a b] is given by

b
(u(y), v(y))w Zu(’)(a)v(Z (a) —G—E:u(Z (b)v (b /u(ll)v(”)dy, (3)

and the norm || u |y is denoted by || u [fwi= +/(u,uw)w11, where u,v €
Wtla,b).

Theorem 1. The space W'[a,b] is a reproducing kernel space. That is, there
exists Ry(y) € W' a,b], y € [a,b], for any u(y) € W''[a,b] and each fized
T € [a,b], such that (u(y), Rz(y))wu =u(z). The reproducing kernel R;(y) can
be denoted by

21
Z Ciyza yS z,
R.(y)=4q 5 (4)
Z diyza y>zx.
1=0

The proof of Theorem 1 and the method of obtaining coefficients of the re-
producing kernel R, (y) are given in Appendix.

2. The reproducing kernel space W'[a, b]

The inner product space W'[a,b] is defined by Wl[a b = {u(z) | v is an
absolutely continuous real value function, v’ € L?[a, b]}. The inner product and
norm in W1[a, b] are given respectively by

b
(u(e), v(@))w: = / (wv + ' )dz, | u llwr= v/ @,

where u(z), v(x) € Wl[a,b]. In [17], the authors proved that W[a,b] is a com-
plete reproducing kernel space and its reproducing kernel is

- 1
Raly) = 2sinh(b — a)

[cosh(z +y — a — b) + cosh(|z — y| — b + a)].

3. The solution of Eq.(2)

In this section, the solution of Fq.(2) is given using reproducing kernel method
in the reproducing kernel space W'l[a, b].

In Fq.(2), it is clear that L : W'l[a,b] — Wl[a,b] is a bounded linear opera-
tor. Put ¢;(x) = R,,(z) and v;(z) = L*p;(z) where L* is the adjoint operator
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of L . The orthonormal system {t;(z)}$2, of W[0,1] can be derived from
Gram-Schmidt orthogonalization process of {9;(x)}52,,

z) =Y Butr(x), (B > 0,6 =1,2,...). (5)
k=1
Theorem 2. For Eq.(2), if {z;}52, is dense on [a,b], then {¢i(x)}52, is the
complete system of W1t[a,b] and v;(x) = LyRy(y)|y=z; -
Proof. Note here that

vi(z) = (L*¢:)(@) = (L*¢i)(y), Rz(y))
= (i (y), LyRm(y)) = Lny(y)|y=xi~

The subscript y by the operator L indicates that the operator L applies to the
function of y. Clearly, ¥i(z) € W''[a, b].

For each fixed u(z) € Wll[a,b], let (u(zx), z/Jz(x)) 0,(i = 1,2,...), which
means that

(u(z), (L*¢i)(z)) = (Lu(-), ¢:(-)) = (Lu)(z:) = 0. (6)

Since {z;}32, is dense on [a,b], (Lu)(z) = 0. It follows that u = 0 from the

existence of L1, So the proof of the Theorem 2 is complete. O

Theorem 3. If {z;}{2, is dense on [a,b] and the solution of Eq.(2) is unique,
then the solution of Eq.(2) s

= ZZﬁikf(fck)%(x)- (7)

i=1 k=1

Proof. Applying Theorem 2, it is easy to know that {1,(x)}32, is the complete
orthonormal basis of W1l[a, b].
Note that (v(z), ¢;(z)) = v(z;) for each v(z) € W[a, b, hence we have

1@)=§wmwmmm

= Z Z Bik (u(z), L*or(x)) P, (x)

1 —

@
I

=§§@mmw%mwm> ®)
= £ 3 Bulf@) @)@
=& 5 A f@)B @

1

and the proof of the theorem is complete. d
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Now, the approximate solution u,(z) can be obtained by the n-term intercept
of the exact solution u(x) and

un(z) = Z > Bif(@r)i(=). (9)

i=1 k=1

Remark 1. Put Q = Span{{¥,}",}. Clearly, Q C W'l[a,b]. In fact, up(z) is
the projection of exact solution u(x) onto space Q.

Theorem 4. Assume u(z) is the solution of Eq.(2) and rp(z) is the error
between the approzimate un(z) and the eract solution u(xz). Then the error
rn(z) is monotone decreasing in the sense of || - ||y .

Proof. From (7),(9), it follows that

Il = S5 3 Buf (@) (@) s

é;n'f-l ki:I (10)
= X (X Biflzx)).
i=n+1 k=1 ,
(10) shows that the error 7, is monotone decreasing in the sense of || - |11 and
the proof is complete. 0

Lemma 1. If u(x) € W'a,b], then |u(z)] < M || u(z) |lwu, [vO)| < M |
u(m) “Wll, 1= 1,2,3,4, 5,6,7,8,9, 10.

From Lemma 1, it is easy to obtain the following Theorem.
Theorem 5. uﬁf)(m) —ul(z), i=1,2,3,4,5,6,7,8,9,10 as n — oo.

Remark 2. In this paper, although only special linear tenth-order boundary
value problems are considered, the method presented in this paper can be also
applied to general linear tenth-order boundary value problems.

4. Numerical examples

In this section, some numerical examples are studied to demonstrate the effi-
ciency of the present method. The examples are computed using Mathematica
5.0. Results obtained by the method are compared with the exact solution of
each example and are found to be in good agreement with each other.

Example 1. Consider the following singularly perturbed boundary value prob-
lem: '

(Y10 (z) + (22 — 2z)y(z) = 10 cos(z) — (z — 1)3sin(z), -1 < z < 1,
y(=1) = 2sin(1),y(1) = 0,
y'(—1) = 2cos(1) —sin(1), y'(1) = sin(1),
y(?)(—=1) = 2 cos(1) — 2sin(1),y? (1) = 2 cos(1),
y3(=1) = 2cos(1) + 3sin(1), ¥y (1) = —3sin(1),
Ly (—=1) = —4cos(1) + 2sin(1),y" (1) = —4 cos(1),
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whose exact solution is y(z) = (z — 1)sin(z). The maximum error in absolute
value | y*) (z) — yf{") (x) | associated with g, n=0,2,4,6,8 are summarized in
Table 1, 2. Table 1 is the results obtained using method in [12] and Table 2 is

the results obtained using present method.

Example 2. Consider the following singularly perturbed boundary value prob-
lem:

(y10(z) — zy(z) = —(89 + 21z + 22 — 23)e®, -1 <z < 1,

y(-1) =0,y(1) =0,

y'(-1) = %?y,(l) = —2e,

y@(~1) = 2,43(1) = —6e,

Y@ (~1) =0,y (1) = ~12e,

y B (=1) = =4,y (1) = —20e,

whose exact solution is y(z) = (1 —z2)e*. The maximum error in absolute value
| ") (z) — 4% (z) | associated with ¢, = 0,2,4,6,8 compared with those
considered by Siddiqi and Twizell [9], Siddiqi and Akram [12] corresponding the
method developed for h = 1/9(n = 19) are shown in Table 3. It is evident
from Table 3 that the maximum absolute errors are less than those presented
by Siddigi and Twizell [9], Siddiqi and Akram [12].

\

Example 3. Consider the following singularly perturbed boundary value prob-
lem:

( 419 (2) + y(z) = —10(2z sin(z) — 9cos(z)), —1 < z < 1,

y(—1) = 2sin(1),y(1) =0,

y'(—1) = —2cos(1),y'(1) = 2 cos(1),

) ¥ (=1) = 2cos(1) — 4sin(1), 5 (1) = 2cos(1) — 4 cos(1),

y3)(=1) = 6cos(1) + 6sin(1),y® (1) = =6 cos(1) — 6sin(1),

y (=1) = ~12cos(1) + 8sin(1), ¥4 (1) = =12 cos(1) + 8sin(1),

\

whose exact solution is y(z) = (z? — 1) cos(xz). The maximum error in abso-

lute value | y® (z) — v$)(z) | associated with v, = 0,2,4,6,8 compared
with those considered by Siddigi and Twizell [9], Siddigi and Akram [12] corre-
sponding the method developed for h = 1/16(n = 33) are shown in Table 4. It
is evident from Table 4 that the maximum absolute errors are less than those
presented by Siddiqi and Twizell [9], Siddiqi and Akram [12].

4. Conclusion

In this paper, we construct a new reproducing kernel space and solve a class
of linear tenth-order boundary value problems using reproducing kernel method.
The proposed method is implemented on three test examples. Comparing with
other methods, we can see that the results obtained using this method are more
accurate than the stated existing methods with same numbers of nodal points.
And this method avoids the complexity provided by other numerical approaches.
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TABLE 1. Maximum absolute errors for Example 1 in yff ), U=

0,2,4, 6,8 using method in[12]

y n=14 n=28 n=42 n=>56
p=0 5.96x10"° 7.99x10~" 1.72x107" 3.73x10°°
p=2 179x107% 7.10x107% 1.45x107° 4.83x1077
p=4 431x10"". 2.35x107% 4.28x107! 1.93x107*
p==6 4.42x10"" 2.84x107%2 6.70x107* 7.30x107*
p==8. 555x10T% 3.52x10%? 4.46x10%? 6.36x10"2

TABLE 2. Maximum absolute errors for Example 1 in y

(1)

n HLL:

0, 2,4, 6, 8 using present method

(

v n=14 n=28 n=42 n=>56
p=0 537x107° 1.34x1077 5.98x10~'% 3.36x10™"°
p=2 319x107% 7.98x107° 3.55x107° 1.99x107°
p=4 838x1077 2.10x1077 9.32x107® 5.25x107®
p=6 3.02x107% 7.54x107°% 3.35x107° 1.88x107°
p==8 7.94x107® 1.99x107® 8.83x10™* 4.97x107*

TABLE 3. Comparison of maximum absolute errors of the

present method with other methods for Example 2 in y,

(1)

(n)

Yn Oz € [z5,2k-5] [9)z & [z5, Tk—5] [12] Present method
uw=20 2.65x10~* 4.16x10™"° 3.28x107° 3.92x107°
pw=2 6.55x1074 2.41x10110 1.40x1073 2.37x1077
p=4 1.02x1073 7.30x10717 7.76x1072 5.76x107°
p==6 4.04x1073 3.83x101 1.97x1071 1.96x1073
p=2_8 1.10x1072 3.17x10%T17 2.73x 1014 5.47x107?

TABLE 4. Comparison of maximum absolute errors of the
present method with other methods for Example 3 in y,({*)

Y 9]z € [x5,2k-5] [z & x5, Tk—5] [12] Present method
©=0 2.65x10 7 4.16x107T 8.85x1078 1.13x10°8
=2 6.55x1074 2.48x10%1¢ 3.65x107° 6.71x1078
p=4 1.62x1073 5.75x10%7 5.92x107° 1.77x107¢
p==6 4.04x1073 1.65x10716 1.78%x1072 6.40x10~*
=2, 1.10x1072 - 3.20x10™"? 2.08x10"3 1.70x1072

Moreover, the higher-order derivatives of approximate solutions can also approx-
imate the higher-order derivatives of exact solutions well. Therefore, our con-
clusion is that the present reproducing kernel method is a satisfactory method
for solving linear tenth-order boundary value problems.
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Appendix

The proof of Theorem 1:
Integrations by parts for (3) gives

(u(y), Rz (y))wn

X () () & @D mp) b (22)

= L u@RY (@) + 3 ORI @) + [ uw) (R @)y
+u(y)RED ()8 — v (9)RE® ) [% + uP (y)RED (y)[8 (11)
—u® () RID )t + @ @)RE (y)[8 — u® (y) RS (v)[8
+u® () RED ()]t — uD ()RS ()]t + u® () RSP ()2
—u®(y)RED (m)[2 + w10 () RSV (y)[2.

Since R.(y) € W'l[a,b], it follows that

R¥W(a) =0,RV(b) =0,i=0,1,2,3,4. (12)

Since u € W'[a, b], one obtains u®(a) = 0,u®(b) = 0,5=0,1,2,3,4. If
RU9(b) — RO (b) = 0, R{'(a) + R (a) = 0, (13)
RW(a) = RD(b) =0, i = 11,12, - -, 15, (14)

then (11) implies that
b

(u(®), Ra () w1 = / u(y)(~RED (3))dy.

a

For Vz € [a,b], if R;(y) also satisfies
—RP?)(y) = é(y — ), (15)

then

(u(), Rz (y)) w1 = u(2).
Characteristic equation of (15) is given by A?? = 0, then we can obtain charac-
teristic values A = 0(a repeated root of multiplicity 22). So, let

21
Z Ciyza y<z,
Ry(y) = 25110 '
> diyt, y>w
| i=0
On the other hand, for (15), let R;(y) satisfies
R¥)(z +0)=R¥®(z-0),k=0,1,2,--,20. (16)
Integrating (15) from z — € to z + ¢ with respect to y and let ¢ — 0, we have
the jump degree of R(Izl)(y) aty=r=
RV (z —0) — RV (z +0) = 1. (17)
From (12),(13), (14), (16), (17), the unknown coefficients of (4) can be obtained.
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