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OPTIMAL INVESTMENT FOR THE INSURER IN THE LEVY
MARKET UNDER THE MEAN-VARIANCE CRITERION f
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ABSTRACT. Inthis paper we apply the martingale approach, which has been
widely used in mathematical finance, to investigate the optimal investment
problem for an insurer under the criterion of mean-variance. When the risk
and security assets are described by the Lévy processes, the closed form
solutions to the maximization problem are obtained. The mean-variance
efficient strategies and frontier are also given.
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1. Introdu(_:tion

The problem of optimal investment for a general insurer has attracted more
and more attention since the work of Browne [1] where the claim process is
approximated by a drifted Brownian motion and the stock price process was
modeled by a geometric Brownian motion. Browne [1] maximized the expected
constant absolute risk aversion(CARA) from the terminal wealth. Browne [1]
also showed that the target of minimizing the ruin probability and the target
of maximizing the exponential utility of the reserve (at a future time) produce
the same type of strategy when the interest rate of risk-free asset is zero. The
strategy is to invest a fixed amount of money in the risky asset. '

Hipp and Plum [2] used the classical Cramér-Lundberg model to describe the
surplus of the insurance company and assumed that the insurer have an option of
investing part of his or her reserve in the risky asset (there is no risk-less asset),
which follows a geometric Brownian motion with the target of minimizing ruin
probability. Explicit solutions can be obtained in the case of exponential dis-
tributed claim-size. The set-up is adopted by most of the works on this subject
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since 2000. Later, there are some papers considering the similar optimal invest-
ment problem, such as, Liu and Yang [4], Yang and Zhang [5], Wang [6], Wang
et al. [7] and etc.

In Liu and Yang [4], the model in Hipp and Plum [2] incorporate a non-zero
risk-free interest rate is reconsidered. In this case, closed-form solution can not be
obtained. But, they provided numerical results for optimal policy for maximizing
survival probability under different claim-size distribution assumptions. By the
approach of stochastic dynamic programming (the HJB equation), Yang and
Zhang [5] used a jump-diffusion to model the risk process and considerd the
portfolio problems to optimize various objective functions. In particular, they
obtained a closed-form solution to maximize the expected CARA utility. See
also Wang [6] via another approach when the claim process is supposed to be a
pure jump process and the insurer have the option of investing in multiple risky
assets.

The mean-variance criteria to portfolio selection problem was firstly proposed
by Markowitz [8]. Later on, it has become one of the foundations of modern
finance theory. See Merton [9] for the single-period, Li and Ng [10] for the
discrete-time, multi-period model, Zhou and Li [13] for the continuous-time, Zhou
and Yin [14] and etc. Recently, Wang et al. [7] pointed out that the mean-variance
criteria was also of interest for an insurers’ optimal investment problem using a
martingale approach.

The martingale approach has been widely used in mathematical finance to in-
vestigate the optimal investment problem. See Kramkov and Schachermayer [11]
for a detailed description. Recently, Lévy process has attracted more and more
attention in the financial modeling, see Cont and Tankov [12].

This paper is a continuation of Wang et al. [7] and the model used in this
paper is essential due to Wang et al. [7]. The risk process is modeled by a Lévy
process adn the insurer has option to invest in two tradeable assets whose prices
are described by the Lévy process. The optimal strategies are obtained explicitly
under the mean-variance criterion via the martingale approach. It is remarkable
that the optimal strategies depend on the jumps of the stock price process.

The remainder of this paper is organized as follows. In Section 2, we give
the mathematical description of the investment problem. In Section 3, we first
obtain strategies under the mean-variance and then work out the mean-variance
efficient strategies.

2. Preliminaries

The following assumptions for the continuous-time security market model are
made: ' '

(1) continuous trading is allowed,;

(2) no transaction cost or tax is involved in trading; and

(3) all assets are divisible, that is, fractional units of assets can be traded.
In Wang et al. [7], the insurer can invest in a security market described by the
standard Black-Scholes model, where there are two tradeable assets: a bond and
a stock. The price process B(t) of the bond follows

dB(t) = rB(t)dt,
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where 7 is the risk-free interest rate. The price process S(t) of the stock satisfies
the following stochastic differential equation (SDE):

dS(t) = bS(t)dt + o S(t)dw ",

where b is the appreciation rate, o > 0 is the volatility, T > 0 is a fixed and finite
time horizon, and Wt(l) is a 1-dimensional standard Brownian motion defined on
a filtered complete probability space {2, F, F; P}. In this paper, we generalize
the above price process model to a stochastic cash flow, which is still denoted by
S(t) and satisfies

dS(t) = bS(t)dt + oS(t)dW V) + oS(t)dLiY, (1)

where L{Y) is a 1-dimensional compensated pure jump Lévy process defined on

a filtered complete probability space {2, F, F; P}. In Yang and Zhang [5], the
risk process R; of the insurer is modeled by

N(t) |
dRy = adt+ pdW(t) —d | > Y |, (2)
=1

where o and 3 are constants, W is another 1-dimensional standard Brownian
motion, and Z;N:(f) Y; is a compound Poisson process defined on {Q, F,F; P}.
N(t) is a homogeneous Poisson process with intensity A and represents the num-
ber of claims occurring in time interval [0,7]. Y; is the size of the i-th claim.
Thus the compound Poisson process vaz(lt )Y; represents the cumulative amount
of claims in time interval [0,T]. The claims’ sizes Y = {Y;,? > 1} are assumed
to be an i.i.d. sequence with a common cumulative distribution function F’ sat-
isfying F(0) = 0 and [, 2*dF(x) < oo. The diffusion term W (t) stands for
the uncertainty associated with the surplus of the insurer at time . (Wm,W)
is a 2-dimensional Brownian motion such that the correlation coefficient of the
components is p. W can be written as W (t) = th(U ++/1- pQWt(Q) , where
W®) is another 1-dimensional standard Brownian motion independent of W(1),

Furthermore, it is usually assumed that WO and Y = {Y;,7 > 1} are mutu-
ally independent. If L,(tQ) denotes the compensated compound Poisson process
Zi\;(f) Y; — Ampt, where mp is the mean of F' , then the risk process (2) can be
written as

dR, = (o= mp) dt + BpdW " + py/1— p2dW* - dL?). (3)

As in Wang et al. [7], we will use the following risk process which is still denoted
by R; and satisfies

dR, = cdt + BpdW " + By/1— p2dw® — dL{?, (4)

where ¢ and 3 are two constants, W1 and W2 are two independent 1-dimensional

standard Brownian motions, and ng) is a 1-dimensional compensated pure jump
Lévy process. They are all defined on (Q, F, F¢, P). F is the usual augmentation
of the natural filtration generated by W, W) LW L(2) with F = Fyp, and



866 Junfeng Liu

WO W@ LV L) are mutually independent. For i = 1,2, let yu; denote the
jump measure of L and v; denote the dual predictable projection of y; which has -
the form v;(dt, dz) = dt x m;(dz) with m;({0}) = 0 and [;(z* A 1)m;(dz) < oo.
Obviously, Equation (4) is the generalization of Eqaution(2). Throughout this
paper, we make the following assumption on the Lévy measure m; to avmd some
tedlous technical arguments:
A:) [, x*my(dz) < oo.

It is well known that, under assumption (A:), L) is square-integrable and

has the following Lévy decomposition (see, e.g., Cont and Tankov {12]):

L) = /0 /R o (s, d) = vi(ds, d). (5)

Remark 1. For risk process model (2), ma(dz) = A\F(dx).

The insurer is allowed to invest in stock as well as in bond. A trading strategy
of the insurer can be modeled by an F;-predictable process m = (), where 7
represents the dollar amount invested in the stock at time ¢.

Definition 1. A trading strategy 7 is called admissible if E [ fOT wfdt] < 00.

The set of all admissible trading strategies is denoted by II. Corresponding
to an admissible trading strategy 7 and an initial capital z¢, the wealth process
XZ*0™ of the insurer follows the dynamics

X" =m (bdt +odW, " + odL{V ) + (X707 = m) rdt + cdt + Bpd Wy

+8y/1 = p2dw® —dL?,

XSCO’ = T,
that is

t
X5 =em (zo + / ((b—r)ms +c)e " ds + / (s + Bp)e~ AW

t
/B\/1~—pe“"sdw(2)+/ cr'lrse’”dLgl)—/ e dL{),
0

cle™ —1 ¢
=€rt:l?(] + ( ) + (b _ ,r)/ ﬂ_ser(t—s)ds + / (0’71'5 + ﬁp)er(t—s)dws(l) (6)
r 0 0 '

i t t
+/ B1/1 - p2ert=s) g ? +/ omse" ¢~ LY —/ ert=)dr (.
0 0 0

Suppose that the insurer has a utility function U of the terminal wealth, then
the aim of the insurer is to

Mazimize E[U(X7°7)], wmell (7)

The utility function U is strictly concave and continuously differentiable on R.
Since U is strictly concave, there exists at most unique optimal terminal wealth
for the company. The following Proposition is from Wang et al. [7], Proposition
2.1.
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Proposition 1. If there exists a strategy n* € Il such that
E [U’ (X;O’”*) X;ﬁ"”r] is constant over mw €Il (8)

then 7 1s the optimal trading strategy.

Remark 2. Such sufficient conditions for the optimal strategies are well known
in the martingale approach to the optimal investment, cf. Karatzas et al. [15],

among others.

In the following sections, we will apply the previous proposition to work out
the optimal strategies explicitly for the commonly used quadratic utility.

To conclude this section, we introduce some notations and a martingale rep-
resentation theorem that will be used in the next section.

Some notations: .

e P: the predictable o-algebra on Q x [0,T], which is generated by all left-
continuous and F, +~adapted processes

o P :=P Q®B(R)

e L(P): the set of all F;-predictable, R-valued processes 6; such that
S 161(6)[2dt < o0 aus.

o L?(P): the set of all F;-predictable, R-valued processes #; such that

E [ s |01(t)|2dt] < o as.
o L(P): the set of all P-measurable, R-valued functions 63 defined on Q x
[0,7] x R such that \/ZO<s§t |05(s, ALg)|?1(aL,0) is a locally integrable in-

creasing process and for all ¢t € [0,T], [, [05(t, z)|mi(dz) < oo a.s., where 1(,
denotes the indicator function. '

~

e L2(P): the set of all P-measurable, R-valued functions 63 defined on Q x
[0,7] x R such that F [fOT Jz |03(t,x)|2m(dx)dt] < 0

o © :={0 = (01,02, 05,61) € L(P)xL(P)xL(P)x L(P)}

o O2 := {0 = (61,6,,03,04) € L2(P)x L2(P)x L2(P)x L*(P)}

e LZ: the set of all (F);-adapted processes (X;) with cadlag paths such that
E [supgc;<p | Xt]?] < 0.

It is well known that every square-integrable martingale belongs to L%, and
it is easy to see that if 7 € II then X" € LZ. The following result of Cont and
Tankov [12] Proposition 9.4 is the critical tool to obtain our main result.

Lemma 1. (Martingale Representation). For any local (resp. square-integrable)

martingale (Z:), there exists some 8 = (01,02,03,04) € O (resp.0 = (61, 62,03,04) €
©?) such that

2 t 4 t
Ze=Zo+ ) / 0:(s)aw ) + 3" / / 0:(s, ) (pi—2(ds, dx) — vi_a(ds, dz)),
i=1 V0 i=3 /0 /R

for allt € [0,T).

(9)

3. Mean-variance criterion
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The problem of mean-variance portfolio choice is to maximize the expected
terminal wealth E [X7”"] and, in the meantime, to minimize the variance of the
terminal wealth Var [X7°"] over m € II. This is a multi-objective optimization
problem with two conflicting criteria. The trading strategy n* € II is said to be
mean-variance efficient if there does not exist a strategy m € II such that

E[X2™] > E [X:‘?’”’*] . Var[X2"] < Var [X;O’“*] . (10)

with at least one inequality holds strictly. In this case, we call
(E[X7°™],Var[X7°™]) € R? an efficient point. The set of all efficient points
is called the efficient frontier. It is well-known that to find a mean-variance
efficient strategy is equivalent to maximize the expected quadratic utility. Thus,
in this section, we consider the problem (7) for the quadratic utility function
U(z) = z — Za?, where v > 0 is a parameter.

3.1. Efficient strategies

For the utility function U(z) = z — 2?, we have U’(z) = 1 -~z and condition
(8) can be written as

E|(1-vxm) x77

is constant over m € II. By (6), it is equivalent to that

' T
E [(1 - ferf,”P’”*) / ((b — r)mse " ds + omse” T AW + awse—rdegl)) :
0 (11)

is constant over 7 € Il. Put Z; = E[1—yXZ"™ |F,], t€[0,T], then Z; = 1—

fyX;O’”* and Z* = E [Z}|F;] a.s. for any stopping time 7 < T' a.s. Furthermore,
we have the following lemma.

Lemma 2. Let m* € II, then 7* satisfies condition (11) if and only if there exists
a (0%,0%,0;) € L*(P)xL?(P)xL?(P) such that (X’”O”T*,W*, Z*,O;,O;,HZ) solves
the following forward-backward stochastic differential equation (FBSDE)

4

dX; = rXpdt + (b — r)mdt + om dW ) + cdt + +BpdW Y
+8/1 = p2dwW® + odLV — aL?,
Xo = o,
dZy = =2 Z,_dW" + 6, (t)aw,”
+d (2?23 f(f S 0i(s, ) (pi—2(ds, dz) — v;_o(ds, da:))) :
Zr =1—~Xr.

(12)

for (X,m,Z,02,03,04) € L% x 11 x L% x L*(P)xL?(P)xL*(P).

Proof. Suppose 7* satisfies condition (11). It is clear X% ™ ¢ L% solves the
forward SDE in (12) for X and (Z;) is a square-integrable martingale. For any
stopping time 7 < T, let 7/ = 1(;<,), then 77 € II. Substituting 77 into (11),
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we have

E [Z:T“/O ((b —r)e " ds + oe " dW V) + Ue_”dLg”)] :

=E [E (27| F] / ((b —7)e "ds + oe T dWD) + ge—rdegl)):l }
0

(13)
=E [Z: / ((b —r)e "ds + ge T dW Y + ae_rSdLgl))] :
0
is constant over all stopping time 7 < T a.s., which implies that
¢
0

is a martingale. Since Z; is a square integrable martingale, then by Lemma 1,
there exists 0 = (07,03, 63, 0%) € ©2 such that

2
dz; =07 (t)aw”

=1

=t 15
+d <;/{; ]};91-(3, z) (pi—2(ds, dz) — Vi_g(ds,dx))) ) (15)

By Ito’s formula, we have

t
d (Z: / ((b - T)e_”ds -+ o'e_rdes(l) + Ue—TSdLgl)>) :
0

(16)
= ((b—r)e " Z;_ 4+ oe 07 (t)) dt + local martingale,
which together with (14) implies, (b —7)Z;_ + 007(t) =0, i.e.
* b—r *
()=~ ;.. (17)

By (15), we know (Z*,05,0%,0}) solves the backward SDE in (12), and hence

(Xxo”** T, 2%, 65, 03, 92) solves the following forward-backward stochastic dif-
ferential equation (12). N

Conversely, suppose there exists (Z*, 65, 65,63) € L% x L*(P)x L? (P)x L%(P)
such that (X To, ™ g 7%, 95,6‘;,92) solves the following forward-backward sto-
chastic differential equation (12). It is easy to verify that for any = € II, by Itd’s
formula that (Z] M) is a local martingale, where

4
M7= [ ((0=rime e ds + omee AW + omedLY).
0

Furthermore, for any 7 € I, we have M™ € L% and hence
(E { sup ]J\/ff[ﬂ) < 00,
0<t<T

{ZZMT :7 is a stopping time and T<T},

[/
[

E [ sup ]Zt*Mt"I} < (E{ sup |Zt*|2}>

0<t<T 0<t<T
which implies that the family
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is uniformly integrable and hence Z*M™ is a martingale. Thus we have E[Z} M7

] = 0 for any 7 € II, implying that 7* satisfies condition (11). O
Now let us give the main result of this note.

Theorem 1. 7* is the optimal strategy for the quadratic utility function U(x) =
x — Jz* where

( T = (i;r%:exp ((T—t) (Q%)Q—-r)) '3
Zi = (1= e Tao ~ 79T 4 (b r)gpeiat) T,
102
R T
-0y fot Ms“iﬂs exp ((T —8) (r — ﬁf’;TT)g)) dry
+’7f0t M7 exp ((T —s) (r — Qg_%)‘)) dL?).

Proof. In what follows, we will solve FBSDE (12) by two steps, first, conjecture
the form of solution; next, verify it.

Step 1: Put
¢
A = exp (/ asd3> , tel0,T],
0

where (a;) is a non-random Lebesgue-integrable function to be determined. If
(X,m, Z,02,0s,64) solves FBSDE (12), then by Itd’s formula, we have

\

T T
ArZr = Zy +/ AgdZ +/ Zs_dAs,
0 0

T b—r T T
= Zo — / A Zo_dW + / Aba(s)aw® + / Zo_Asasds
0 o 0 0 (19)

+ (2:: /0 ' /R Asbi(s, z) (piza(ds, dz) — vi_2(ds, da:))),

which implies
1-Zr 1 Z 1 [Tb—r

v 7 YAr YA Jo O
(2 -~
W’AT / Asb2(s)dW, / Zs_Asagds

’)’AT <;/ /A 0:(s, x) (1i—2{(ds,dx) — v;_2(ds, d?:)))

Let (X, 7, Z,605,05,04) solves FBSDE (12), then there must be Xy = --;{Zl

Comparing dW't( ~-term, th )_term and d(u; — v;)-term (¢ = 1,2) respectively
in (20) with those in (6). It is reasonable to conjecture that

b=r y Zi— =" T (om + Bp), _AD(E) = /1 p>er<7 1),
Yo Ar A

S~ 85—

(20)
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_At@:j(t,x) _ _’Eo’ﬂ'ter(T_t) At04(t7 .’I:) — xeT(T—t)‘
~YAT ’ YAT
i.e.,

b—r)A —r(T— i

( T = (w)o—'—r‘.)ht Zy_e "0 — 73;2’
3 1=pPAT Tt

] 6a(t) = - e (T, (21)

O5(t, z) = ——A’UT{{AT eI,
| O4(t,z) = %fler(T‘t):c.

Substituting (21) into (20), then we have

T T
L 2oy (ms+ﬁp)e"”"“)dw"§”+/ By/1 - pre" T aw
gl v AT, 0
T T 1 T
+/ omse”T=9qLM —/ e T=)qr® ———/ Zo_Asasds,
0 0 AT J,

: rT T
. -1 s
= E Zo +XT—e7Ta:o—c—(e—)—(b—r)/ ree" T ds
0

1—-Zr

v VAT r
1 T
i Zs_Asasds, (22)
YAT [/,
' rT _ T . \2
— Xy 4 1 Z e Ty — cle ) (b—1)?AsZs- s
v ~YAT r o vyo2AT
T _ r(T—s) T
+/ (b—r)Bpe ds 1 / 2. Asards,
0 g YAr J,
2
where the second equality follows from (6). If we take a; = — (b; " and

rT T _ r(T—s)
Zy = Ar — yAre'Tzo — yAT —__c(e v 1) +yAT / (b—r)Bpe ds,
T 0 r

erT

c -1 el —1 _(b=1)*?
—(.—) + (b —r)Bp )e = T
7 or

= (1 —ve Ty —~

then (22) is reduced as 1_—WZT— = Xr, and FBSDE (12) is solved.
Step 2: Now let us verify the conjectures in Step 1. Let

650 =~/ T=Fep (0 -0) (- L1,

g

03(t, ) = —oywm, exp ((T —¢) (r - M)) ,

o2

bitt.a) = vwep (-0 (- L0 )).

o2

and

T rT 02
* . e -1 . —1 =)=
Zy = (1 —ye Ty — W’S(—-)- +1(b - r),dpe ) e~ a2 T (23)

r ar
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then the following SDE

b—
dzZ, = ——7,_dw® + 03(t)dw®
o

+d (Z/ [0* s, x) (i-2(ds, dz) — vi—a(ds, dw))> )

admits a solution

t 4 t
Z: = A (Z('; +/ 1\!'_','19;(3)(111’4?) + (Z/ /AI;IOZ(s.a:) (ni—2(ds.dx) — ui_g(ds.dm))>>
0 i=3 YO JE

t
b— 2
= M, (Z;; — B/ 1 - pz/ M 'exp ((T— s) (r el a;) )) dWS(2)>
¢]

t 2
— oy M, / M 7. exp ((T —s) (r - (l’:;_))) drV
o a
t (b—1)?
+7"A[t/ ]\15_1 exp ((T—S) (T‘— ——2—'))dLg2),
a
0

v b—r_ 1y 1/(/b-—r 2
]\/[t:exp(— - Wt”—§( - )t> (25)
Furthermore, let

B Gk ) S <(T 1) (M - 7‘)) - %3, (26)

~o? o2
then by the same procedure as in (22), it is easy to verify that
1—-Zr

Y

Thus (X zom" * 7%, 05, 0%, 63) solves the forward-backward stochastic differen-
tial equation (12).

Finally, by Proposition 1, Lemma 1 and the arguments in Step 1-2, we com-
plete the proof of this theorem. O

(24)

where

= Xp, ie 1—4X3" =Zk

3.2. Efficient frontier

In this subsection, we apply the results established in the previous subsection

to the mean-variance problem.

1-22
5 L we have

Since Z* is a square-integrable martingale and X7°" =

E [X”yl?“'”*] = = (27)
Var | X7 | = LVar (23] = & (BI(Z5)?) - (Z)%).

In order to avoid some tedious technical arguments in the following, we assume
that Z* is non-negative. Let f(t) = E [(Zt*):’] Since Z* is a non-negative
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square-integrable martingale, we have

ft) =E[(Z)]

_ /0 t <1+ /R x2m1(dx)> (b;r)Q F(s)ds + h(t), (28)

where

o242 [ﬂng J:"{ :r2m1(d:c) + f: 3327’712((11') +ﬁ2(1 _ p2)]
2(b—1r)2 — 2ro?

X !:exp <2 <r— (b _2T)2) (T - t)) — exp (2 (r— (® _;)2> T)}
o 7 (29)
. —_r * -7 2 ~T7 2
- Q(b'y_ﬁi()z_r)f?o [exp((r—— (® 02) )(T—t)> —exp((r— ( 02) )T>} :

Solving Eq. (28), we obtain

h(t) =

E[(Z7)*] = £(T)

oo (10 fomier) (7))
X ((Za‘)2 +/0T exp (_ (1+A$2m1(dx)> (b;T>2t> dh(t)) ‘(30)

Substituting Eq. (29) into Eq. (30), we have

E[(z3)Y

= exp ((1 +/R:c2m1(dz)> (b;r)2T> (ZS)Z.

N 72 [820* Jpz*ma(da) + [ °ma(dz) + B2(1 - p?)]
(1~ faoPmu(do)) (552)° —2r

x !:1—exp <T (2r+/R:c2m1(dx) (”;T)Q_ (5;7-)2»} (31)

298p(b — 1)(Z) 2 b-r\*,
+ - (IR$2m1(d$) (b_T)g +7-) {1 — exp ((/Ra: m(dz) (T) + 7) T>

o

Substituting Eq. (31) and Eq. (23) into Eq. (27), and eliminating v, we obtain
the efficient frontier parameterized by z as follows
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(E [X}O-“*] =z,
T (1—] ,,-2,,,1((1J,-))(-"’“T"')2—2r'
1o (1 (or e Lot (527 - (5297))

-+ [(\xp((%)gT)~l]2 <~ Troe + — 1[,3/)(b r) Co‘])

283p{b=-1)

T () ] [ () ]
X [1 — exp ((f: x?my (dz) ((’%’)2 +r T)]
X (z —xoe' T + 5%—1[_/3/)0) — 1) — c0o]

b3

<

(32)

\

Remark 3. From Equqtion(32), we can see that if we do not consider the term

aS (t)dLﬁi) in Equation(1), the efficient frontier in this paper is the same as that
in Wang et al.[7].

1.

10.

11.

12.

13.

14.

15.

16.

REFERENCES

S. Browne, Optimal investment policies for a firm with a random risk process: Ezponential
utility and minimizing the probability of ruin. Math. Oper. Res. 20(1995), 937-958.

C. Hipp and M. Plum, Optimal investment for insurers. Insur. Math. Econ. 27(2000),
215-228.

C. Hipp, Stochastic control with application in insurance. In: Stochastic Methods in Fi-
nance. In: Lecture Notes in Mathematics, vol. 1856(2004). Springer, Berlin, pp. 127-164.
C.5. Liu and H. Yang, Optimal investment for an insurer to minimize its probability of
ruin. North American Actuarial Journal 8(2004), 11-31.

. H. Yang and L. Zhang, Optimal investment for insurer with jump-diffusion risk process.

Insur. Math. Econ. 37(2005), 615-634.1

N. Wang, Optimal investment for an insurer with exponential utility preference. Insur.
Math. Econ. 40(2007), 77-84.

Z. Wang, J. Xia and L. Zhang, Optimal investment for an insurer: The martingale ap-
proach. Insur. Math. Econ. 40(2007), 322-334.

H. Markowitz, Portfolio selection. J. Finance 7(1952), 77-91.

. R.C. Merton, An analytic deriwation of the efficient frontier. J. Finance Quant. Anl.

7(1972), 1851-1872.

D. Li and W.L. Ng, Optimal dynamic portfolio selection: multiperiod mean-variance for-
mulation. Math. Finance 10(2000), 387-406.

D. Kramkov, W. Schachermayer, The asymptotic elasticity of utility functions and optimal
investment in incomplete markets. Ann. Appl. Probab. 9(1999), 904-950.

R. Cont and P. Tankov, Financial Modelling With Jump Processes. In: Chapman and
Hall/CRC Financial Mathematics Series, 2003.

X. Zhou and D. Li, Continuous-time mean-variance portfolio selection: a stochastic LQ
framework. Appl. Math. Optim. 42(2000), 19-33.

X. Zhou and G. Yin, Markowitz mean-variance portfolio selection with regime switching:
a continuous time model. STAM J. Control Optim. 42, 1466-1482.

I. Karatzas, J. P. Lehoczky, S.E. Shreve and G. L. Xu, Martingale and duality methods for
ulility mazimization in incomplete markets. SIAM J. Control Optim. 29(1991), 702-730.
X. Li, X. Zhou and A.E.B. Lim, Dynamic mean-variance portfolio selection with no-
shorting constraints. STAM J. Control Optim. 40(2002), 1540-1555.



Optimal investment for the insurer in the Levy market 875

17. Q. Zhou, Optimal investment for an insurer in the Lévy market: The martingale approach.
Statist. Probab. lett. 79(2009), 1602-1607.

Junfeng Liu received his B.E. degree from Qingdao University in 2004 and M.E. degree in
Applied mathematics in 2007 from Hohai University. Currently, He is pursuing his Ph.D.
degree in East China University of Science and Technology. His research interests include
stochastic analysis, financial mathematics and etc.

Department of Mathematics, East China University of Science and Technology, Shanghai,
China.

e-mail: jordanjunfeng@yahoo.cn



