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OSCILLATORY PROPERTY OF SOLUTIONS FOR A CLASS
OF SECOND ORDER NONLINEAR DIFFERENTIAL
EQUATIONS WITH PERTURBATION

QUANXIN ZHANG*, FANG QIU AND LI GAO

ABSTRACT. This paper is concerned with oscillation property of solutions
of a class of second order nonlinear differential equations with perturbation.
Four new theorems of oscillation property are established. These results
develop and generalize the known results. Among these theorems, two the-
orems in the front develop the results by Yan J(Proc Amer Math Soc, 1986,
98: 276-282), and the last two theorems in this paper are completely new
for the second order linear differential equations.
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1. Introduction

5

As is well known, the comparison and separation theory of zero distribution for
second order homogeneous linear differential equations established by G.Sturm
lay foundation of oscillation theory for differential equations. During one and
a half century, oscillation theory of differential equations has developed quickly
and played an important role in qualitative theory of differential equations and
theory of boundary values problem. The study of oscillation theory plays a
important role in physical sciences and technology; for example, the oscillation of
building and machine, electromagnetic vibration in radio technology and optical
science, self-excited vibration in control system, sound vibration, beam vibration
in synchrotron accelerator, the vibration sparked for burning rocket engine, the
complicated oscillation in chemical reaction, etc. All the different phenomena
can be unified into oscillation theory through an oscillation equation. There are
many books on the oscillation theory, we choose to refer to [1,2]. Firstly, we glve
the oscillatory definition of the solution of a differential equation.
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Definition 1. z(t¢) is a solution of a differential equation, if z(¢) is not the
eventually zero solutions, and existing of a sequence {t;},lim; ., t; = o0, such
that z(¢;) = 0. Such a solution is said to be oscillatory and otherwise it is said
to be nonoscillatory. A nonoscillatory solution z(t) is called weakly oscillatory if
z'(t) changes sign for large arbitrary ¢. See [1].

Definition 2. An equation is called oscillatory if all its solutions are oscillatory.

The oscillatory theory of second order nonlinear differential equations have
been widely applied in research of a lossless high-speed computer network and
physical sciences. In this paper, we study the oscillatory behavior of solutions
for a class of second order nonlinear differential equation with perturbation

, d

(a®(z(@®)z (1)) + Qt,z(t) = P(t,z(t),z (1)), '= T (1)

Where we let

(A1) a: [to,+o0) = R (R = (—00,+00)) is positive continuously differen-
tiable function;

(A2) v : R — R is continuously differentiable function and ¥(u) > 0 for
u # 0;

(A3) Q@ : [to,+00) X R — R is continuous, and there exists continuous func-
tion q(t) and continuously differentiable function f(z), where ¢ : [¢g, +00) — R,
q(t) # 0, i.e., exist tx ,tx — 400 such that ¢(tx) #0, f:R—> R,uf(u) >0

for w0 and f (u) > 0, such that Qf(éf;::)c) > q(t) for x # O;
(Ag) P:[to, +oo) x R?> — R is continuous and there exists p(t) : [to, +00) —

R which is continuous, such that z(t)P(t,z(t),z (t)) < z(t)p(t)z (t) for z # 0.
It is easy to see that Eq.(1) can be transformed into

(a(t)p(z(t)z () +p(t)z (t) + q(t) f(z(t)) =0, (Ey)

it Q(t,2(t)) = q(t)f(z(t), P(t,z(t), 2 (t)) = —p(t)z (t). In (En), if a(t) =
1, (u) = 1, the Eq (E1) can be transformed into

2" (8) + p(B)7 (£) + ¢(8) f(z()) = 0; | (E2)
In‘ (EL), if ¥(u) =1, f(x) = z, then the Eq.(E;) transformed into
‘ (a()e' (1)) +p(t)z (t) + q(D)z(t) = 0. (Es)
In Eq.(E2), if p(t) = 0, f(z) = =, the Eq.(E) is simplified to |
| 2'(t) + q(t)z(t) = 0. (E4)

The equation (E4) has many oscillation criterion. One of the most well-known
criterion is Wintner’s oscillation criterion [3]. It states that the linear equation

(F4) is oscillatory if
lim — / / x)dzds =
t—oo t to Jto
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In 1986, J.Yan [4] extended and improved the criterion to the equation (E3). The
recent paper by Cakmak [5] discusses the oscillation criterion of the equation (E3)
with damping, which extended and improved the Wintner’s result. Among the
other papers in the study of equation (E;) , we choose to refer to [6-11]. This
article is based on [12] and continues to discuss the oscillatory behavior of (1) by
using the generalized Riccati transformation and the integral averaging technique.
We established four new oscillation criterion on certain conditions. Among these
theorems, two theorems in the front develop the results in [4], and the last two
theorems in this paper are completely new for the second order linear differential
equation (Ej).

2. Main results

Theorem 1. Let 0 < ¢; < p(x) < co, f'(x) > k > 0,z # 0. If there exsit
continuously differentiable function p(t) : [to, +00) — (0,+00) and a constant «,
such that

t c1 — co)p*(T T)P\T
imsupe== [ {0 r)p(r)latr) + L) - - ) 220D

t—s o0 4kcicoa(T) coa(T)
raplr) = (0= 1) (0 - 1P pr = o, @)

then (1) is oscillatory.
Proof. Let z(t) be a nonoscillatory solution of Eq.(1) and z(t) # 0 for t > t,.

Consider the function
W a(t)?/)(f':(t)) ()

Then it follows from (1) that

wie) = “HLHOE PO LO) )0 ot 2
< a0+ 250w e £
< ~alt) = g7l W0 - Ew )
- “q““w;(t))ff:cfg | \/— wi) )r
< —-q(t)+4]§fl(:z 5 - [ @W (t) - 2\/%_}

3 (c1 — c2)p*(t) k p(t)
= —alt) - 4kcycoa(t) ;[a_(t_)wz( )= a(t) oV )}
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Consequently, for t > s > tp, we obtain

u/@—r W (r dT<-i/@—T ®o(r)[a(r) + f&;Zﬁg”mT

o p(7)
-2 [e-n pm[;@W?(r) - LW

Now, since
/ww,mwv /a )2 ()W () dr
- / (t = )20 (W (7)dr — W(s)(t — 5)° p(s),

it follows that
[ = n)lar) + (jk;z)ap( ey
< mortowi - £ [ LEDEOV),,

a(T)

- [le-n2) 2, aplr) = (1= D) (Tt = ) W (), ()

coa(T)
where t > s > ty. Therefore

/t{(t — )% p(r)[g(r) + (c1 — cz)pQ(T)] 3 %[(t 3 T)p(r)p(r)

4kcicaa(T) cza(T)

rap(r) = (¢ = 1) (P (e - )22 D bar

@

< (-5 pW ) - [ {¢-nADEWE) + 5l - DAL o)
-l D o

< (t—=9)p(s)W(s), t>s>to. | (4)

Divide two side of (4) separately by t*. Further,we obtain

limsupt™® /t(t—T)O"p(’r) {q(’r)-%(a1 — Cz)pz(T)}dT < lim skupt"a(t-s)"‘p(s)W(s),

t— 400 4kcicoa(T) t—s0o0
t > s > tp. which contradicts the condition(2). The proof of Theorem 1 is
complete. O

Corollary. In Theorem 1,the condition (2) can be replaced by the below condi-
ttons:

® st [ (=) ()lalr) + Gl gy — 4o
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@ im0 2R ) - (1 1 (o)

)O‘_2 ———CQG(T) dr < +o00.

kp(7)
Remark 1. Theorem 1 above develops Theorem 1 in [4].

Theorem 2. Suppose that 0 < ¢; < Y(z) < ¢o, f(x) > k > 0,z # 0, and
there exist continuously differentiable function p(t) : [to, +00) — (0, +00) and the
constant o € (1, +00), such that

x(t —

Y (c1 — e2)p?(r), .
limsup /to(t‘T) prlla(r) + G2 P < oo (3)

In addition, if there exists continuous function ¢(t) : [tg, +00) — R such that

jnjaf e [ t{(t.__ ] MRl Y PR, .

=00 4kcicoa(T) coa(T)
rap(r) = =) ()] (¢ =)o ar 2 o(e), ()
and the below (7) holds, -
t 2 (+ ' '
t_léinoo t—¢ /to (t— T)ap—(é“;ET(z_—)dT = +00, (7)

where ¢, (t) = max{y(t),0}, then (1) is oscillatory.

Proof. Let x(t) be a nonoscillatory solution of (1) and z(¢) # 0 for ¢t > t,.
Consider the function

o = A0V 0
f(z(t))
Proceeding as in the proof of Theorem 1, we obtain (4). Divide two side of (4)
separately by t*. Further,we get

. t>to.

‘ c1 — c)p?(r e
ltigl_kigloft_o‘ /to (t—7)%p(7) [q('r)—l-_( 4kclcz)ap(r() )]dT < ltlgl_:gloft (t—s)*p(s)W (s),

t > s > to, with condition (6), it follows that ¢(s) < p(s)W(s), for s > t,.
Therefore, we obtain

P (s) < p*(s)W2(s). (8)
Define functions u(t) and v(t) by

u(t)=t=¢ /to [(t - 7)% +ap(T) — (t — T)p,(T)] (t — T)a_'lW‘(T)dT,t > to;

kW2 (7)
coa(T)

t
v(t) =t | (t—71)%(7) dr,t > to.
to
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Then, it follows from (3) that

1dr.
9)

) +o(t) < (=) pt)W k)=t [ (=7)%(r)la(r)+ ‘4,;”’(() !

Moreover, from the condition (6), we have

— c2)p3(T
ltlgl 1&ft °‘/ (t — 7)%p(7) q(r) (Cikclcz)apﬁ'() )]dr > p(s),s >ty (10)
and |

limsupt=* [ (t —7)%p(T) [q(’r) + (c1 — colp” (T)]dfr

t oo to 4kcicoa(T)
1 ’ t
—liminf —¢=¢ / [(t - T)M—T—)
t—-+oco 4 to coa(T)

rap(r) = (= )p(r)] (t- P2 2 pl), (1)

(5) and (11) illustrate that there exists a sequence

{tn} st > to,n=1,2,3,..., lim ¢, =400, (12)

n—-+00
such that . |
Jim e [t =) BIR apt) - k= i (0
a— C2a( )
X(tn — T) 2kp( )d T < 400. (13)
Then, as t — 400, it follows from (9) and (10) that
lim El:op{U(t) +o(t)} < p(to)W (to) — ¢(to) = B. (14)

Hence, for sufficiently large n , we have
u(tn) +v(tn) < B | (15)

Because v(t) = /t ( ) o(T )kW (7)

coa(T)
get lim wv(t) = C, where C = +o0 or C is a positive constant. Suppose that

dr > 0, t > ty is increasing, we can

t—-+o0
C = 400, then lirf v(t,) = +o00, and it follows from (15) that
1113 u(t,) = —o0. (16)

According to (15) and (16), we get u(:"g + 1 < &, where ¢ is a constant and

0 < € <1, i.e., for sufficiently large ¢,,, we have

u(tn)
v(tn)

<e-1<0. (17)
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On the other hand, it follows from Schwarz’s inequality that

0 <72 [t = VAL 4 ap(r) = (10 = 10 ()] (0n = )7 W)’

coa(T)
< (1 [ [tn = EDED o apto) = (1 = 2 ()] = 2 H )
— tn _r «a kp(T) 2 e
x(tn /to (th —T) —_CQO,(T)W (r)d >
Thus
WA tn) _ o [, PTD(T) o (2t _mya—2 20T
o< toml <o / (ta=) 20 ap(r) =t =) ()] b= o

From (13), we obtain

u?(tn)
<
0< lim w(tn)

which contradicts the (16) and (17) . If hfl v(t) = C < 400, it follows from
(8) that

< 400,

W2(r)

a(r) dr

t t
lim ie [ (= e 2R PA0) 4 < fim Fye / (t = 7)%p(7)
t—+co Co to P(T)a(T) t=too o to

= (< +o0,
which contradicts the condition (7). The proof of Theorem 2 is complete. O
Remark 2. Theorem 2 above develops Theorem 2 in [4].

Theorem 3. Let ¥(z)f'(z) > k> 0,z #0, and
* Y(u) * P(u)

0< f(u)d u < 400 ) ——=du > —o0. (18)
If there exists diﬁerentzable function p(t).: [to, +oo) — (0, 4+00), such that
' a(t)p(t)
(a(t)p(t)) =0, lim sup — 7 p(a)ds < +00, (19)
and , :
1 ’ p*(7) _
tl}gloo m /to p(s) /to [q(T) — 4ka(r)]des = +00, (20)

then (1) is oscillatory.

Proof. Let x(t) be a nonoscillatory solution of (1) and z(t) > 0 for t > t, > t,.
Consider the function

!

a(t)p(z(t))z ()
flz(®)

W(t) = t>1.
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Then it follows from (1) that

gy — QU T®) + P 3,3 (1) v 5 (E)
W(t) = s W) @) Fr5 05
AT (1)
< -0+ B — el @) 730
_ p*(t) ; z'(t)
= =10+ G rEm Y OO0 e
_ p(t) 2 _ pA(t)
L EIETE) < 0
Integrating above inequality from ¢; to t (t > t1), we get
at)y(z()z'(t) | [* _P) 144
e, 0~ gl <o ey
where C = ,fl)‘fc((z((il))))x (1) Multiplying the two side of (21) by p(t) and inte-

grating, we have

/t a(s‘)p(s)Mds -|-/}t p(s) /ts[q(T) - 4‘7;;2)]de3 S C [ p(s)ds

f(z(s)) t
Hence,
oy, [ ) 7 $lw)
@oe) [ Fidu= [y [ s
t E 2
+ [ o) [ tatr) - Fhlaras
t z(t1) u
<C t p(s)ds +a(t1)p(t1)/0 —?Eu—;du. (22)
Define G(t) by G(t) = fox(t) ?—g%du. From two front terms of (22) , it follows that

there exists a sequence {T,,}7°°, such that
a(Tn)p(Tn)G(Tr) = /:n (a(s)p(s))' G(s)ds > 0;
or there exists T > t;, such that
a(t)p(t)G(t) — /t :(G(S)/)(S))'G(S)ds <0 (23)

for t > T. Consider the first case. Divide two side of (22) by f ty s)ds and replace
t with 7,,. From condltlons (18) and (20) we get a contradlctlon Consider the
second case . Let H(t f ., (a(s) p(s)) G(s)ds, then H(t) is nonnegative and not
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decreasing. From (23) ,we obtain that H(t) > 0 for ¢ > T where T is the same as
the above, and a(t)p(t)H'(t) < (a(t)p(t)) H(t), thus (a%)(’;()t )’ > 0. Consequently,

a(t)p(t) o a(T)p(T)
HE) = HIT)

fort > T'. Further,according to (23) ,we have

a(t)p(t)G(t) < H(t) < H(T)ﬁ%.

It concludes that G(t) is upper bounded , so we mark it with k;. Noticing

t 8 2
(a(t)p(t))’ > 0(t > to) with (22) ,we have / p(s) | la(T) — 42; (( ))]d ds

t1 t1
z(t1) Q/)(

p(s)ds + a(tl)p(tl)/ du + kia(t)p(t). Divide two side of the

above mequallty by ft s)ds and calculate the upper limits for ¢ — +o00. Ac-
cording to (18), (19), (20)1t follows a contradiction. The proof for the case z(t) < 0
for t > t; is similar. Then the proof of Theorem 3 is complete. O

Theorem 4. Let y(x)f'(z) > k > 0,z # 0. Suppose (18) holds, and for every
constant M we have

+o0 M +oo 1 8 pz (7.) .
——ds — / drds = —o0, 24
f, a0 - e 24
then (1) is oscillatory.
Proof. Suppose that x(t) is a nonoscillatory solution of Eq.(1) and z(t) >0 for
t>t; >tg. Consider the function
a(t)y(z(t)z (t)
W(t) = Ct>t.
O =" 160) :
Proceeding as in the proof of the above Theorem 3 ,we obtain (21) , i.e. ,

a(t)p(a () () t P(s)
Fe@) =M, 4 = alds

where M = Jtl)d}((z((ttll))))m (1) " Dividing two side of the above inequality by a(t)

and integrating , we get
" y(a(s))z'(s) M f1 2( )
d il
5 0= [t [ ot o)~ e
From condition (24), letting t — +oco gives

[P (a(s)a(s) =) ()
0= 7@ “~ Lo, f@

—~du — —o0.
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On the other hand , if z(t) > z(t;) for sufficiently large T, then I(t) > 0, which
follows a contradiction ; if z(t) < z(t1), it follows from (18) that

I(¢) :;/a: ) /Om(tl) ORI

W f (u) f(u)
which is another contradiction. For the case z(t) < 0 for t > ¢; , the proof is
similar. Then the proof of Theorem 4 is complete. ]
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