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EXISTENCE OF SPANNING 3-TREES IN A 3-CONNECTED
LOCALLY FINITE VAP-FREE PLANE GRAPH
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ABSTRACT. In this paper we prove the existence of spanning 3-trees in a 3-
connected infinite locally finite VAP-free plane graph. Together with the results
of Barnette and the author, this yields that every finite or infinite 3-connected
locally finite VAP-free plane graph contains a spanning 3-tree.
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1. Introduction

Notation and terminology not defined in this paper may be found in [3] or [9].
A spanning subgraph H of a graph G is a subgraph which contains all vertices
of G. If a spanning subgraph T of G is a tree, then we say that T is a spanning
tree in G. For a positive integer k, a spanning tree T is a k-tree, if dp(z) < k
for all z € V(T). , _ ,

Many problems in graph theory have quite simple solutions in the finite case
whereas in the infinite case the solution may be extremely complicated or the
problem may even remain a conjecture. Such a problem is often solved by
finding a way to decompose the whole graph into smaller fragments that preserve
some specific properties of the original graph and are such that a solution of
the problem for the fragments gives rise to a solution for the whole graph (for
example, see [2] or [4]).
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In this article, we study the existence of a spanning 3-tree in 3-connected
plane graphs. In finite case, as a classical result, Barnette [1] made the following
remark. '

Theorem A (Barnette). FEuvery circuit graph contains a spanning 3-tree.

It may be noted that a circuit graph G is a 2-connected plane graph such that
G U (0G x {v}) is 3-connected for a further vertex v; or equivalently, for every
vertex cut S of G with |S| = 2, every component of G — S contains a vertex of
OG. (Further equivalent forms for such a graph can be found in [5] or [7].)
Barnette’s theorem was slightly improved by Jung [6] by showing the following
~ result: For a circuit graph G and for arbitrary given u,v € 0G (or u,v,w € 0G),
there exists a spanning 3-tree T' with dr(u) = 1 and dr(v) < 2 (or dr(u) < 2,
dr(v) < 2 and dr(w) < 2, respectively). Using these results, Jung [6] extended
the theorem of Barnette into the 3LV-graphs. As introduced in [9], it may be
noted that a 3LV-graph is a 3-connected infinite, locally finite plane graph which
contains no vertex-accumulation point (=VAP) and no unbounded faces.

Theorem B (Jung). In every 3LV-graph there exists a spanning 3-tree.

To extend Theorem B to general 3-connected locally finite VAP-free plane
graphs, it is necessary to show the existence of such a tree in LV-graphs. From
the point of view we in this paper prove that in every LV-graph one can find a
spanning 3-tree; namely

Theorem C. Every LV-graph contains a spanning 3-tree.

Let G be a 3-connected locally finite VAP-free plane graph. If G is finite, then
we have a spanning 3-tree in G by Theorem A, since G is in particular a circuit
graph. If G is infinite, then G is either an LV-graph or a 3LV-graph; i.e., G either
contains an unbounded face or does not contain such a face, respectively. For
the former case, the existence of a spanning 3-tree in G follows from Theorem
C; on the other hand, for the latter case we can also obtain a 3-tree in such a
graph by Theorem B. Thus we proved the following main result.

Corollary. In every 3-connected locally finite VAP-free plane graph there exists
a spanning 3-tree. '

2. Terminology and preliminaries

In order that the present paper be more self-contained, we include some ter-
minology concerning the structure of LV-graphs (following Jung [9]).

Let G be an infinite connected plane graph. A finite set of unbounded sep-
arating paths P = {Py,..., P,} in G will be called a semicycle if there exist
connected subgraphs Gy, G1,...,G, of G such that

[Sl] GZU?:OG,', G()nG,':R for allie{l,...,n}
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and G,NG; =0 for all 3, jE {1,...,n} with ¢ # j, and
[S2] Gy is finite, but G; (i=1,...,n) are infinite.

In this case, the finite subgraph Go of G is called the center of the semicycle
P, which will be denoted by C(P). A semicycle P is induced if all paths in P
are induced. Two semicycles P and P’ are disjoint if V(P) N V(P’) = ; for
convenience, the set of vertices V(P) (respectively, the set of edges E(P)) o
P will be understood to be the union of all vertices (respectlvely, edges) of the
paths in P.
Let P and P’ be disjoint semicycles with P C C(P’) in a connected plane
graph G. A (P,P’)-semiring in G is a subgraph of G consisting of not only
the cycles in P and P’ but also all vertices and edges lying between P and P’.
Bridges of a (P, P’)-semiring R are defined by the bridges of P UP’ in R. For
ke {0,1,2,...}, a bridge B of R is of type k if |[V(B)NV(P')| =k
A (P, P")-semiring R is said to be tight if it satisfies following conditions:
[T1] P and P’ are induced.
[T2] For each infinite component H of G —C(P), there exists exactly one path
P in P’ such that the endvertices of P are adjacent to the endvertlces of
the foot of H.

[T3] Each bridge of R is of type < 2.

[T4] If B is a bridge of type 2, then the two vertices of B of attachmerit on
P’ are adjacent in G. ' :

Recall that an LV-graph is an infinite locally finite 3-connected VAP-free plane
graph containing unbounded faces. Jung gave a so-called ‘structure theorem’
for LV-graphs as follows: Let G be an LV-graph and let Py be an induced
semicycle in G. Then there exists an infinite sequence of pairwise disjoint induced
semicycles (Pg, P1,Po,...) such that

(1) P; CC(Pj41) forall j € {0,1,2,...},

(2) (Pj, Pj+1)-semiring is tight, for all j € {0,1,2,...}, and

() G= U;'io C(P;). '

In [9], Jung gave some important results for solving the problem in this paper,
as a preparatory work. In order that the present paper be more self-contained,
we include the results from his substantial paper.

(2.1) Let B be a bridge of type 0 of a tight (P, P’)-semiring in an LV-graph, and
let £¢g and T be the first and the last vertex of attachment of B on P, respectively.
Then there exists a spanning 3-forest F in B such that:

(1) Each component of F' contains exactly one vertex of attachment of B on
P, '

(2) dr(z) <1 for each vertex x of attachment of B on P, and

(3) dr(zo) = dp(Z) =0.
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(2.2.1) Let B be a bridge of type 1 of a tight (P, P’)-semiring in an LV-graph,
‘and let xo be the first vertex of attachment of B onP. Let further V(B)NV (P') =
{y}. Then there exists a spanning 3-forest F' in B such that: '

(1) Each component of F' contains exactly one vertez of attachment of B on
PUP,

(2) dr(xzo) = 0 and dp(z) < 1 for each vertex x of attachment of B on P,
and '

(3) dr(y) = 0.

(2.2.2) Let B, zo and y as in the Proposition (2.2.1) be given. Further let T be
the last vertex of attachment of B on P. Then there exists a spanning 3-forest
F in B such that:

(1) One component of F contains the vertices T and y, and each of the
remaining components of F' contains exactly one vertex of attachment of
P. ‘

(2) drp(zo) =0, dp(Z) =1 and dp(xz) < 1 for each vertex x of attachment

: of B on P, '

(3) dr(y) =0.

(2.83.1) Let B be a bridge of type 2 of a tight (P, P’)-semiring in an LV-graph.
Let xo be the first vertex of attachment of B on P and let {y1,y2} = V(B) N
V(P'). Then there exists a spanning 3-forest F' in B such that:

(1) A component T of F' contains both y1 and ya, but it does not contain a
vertezx of attachment of B on P.

(2) Each component of F — T contains exactly one vertex of attachment of
B on P,

(3) dr(zo) = 0 and dp(x) < 1 for each vertex x of attachment of B on P,
and

(4) dr(y1) = dr(y2) = 1.

(2.3.2) Let B, xo, y1 and y2 as in the Proposition (2.3.1) be given. Further
assume |V (B) NV (P)| > 2. Then there exists a spanning 3-forest F' in B such
that: '

(1) A component T of F contains ya, but it does not contain a verter of
attachment of B on P.

(2) Each component of F — T contains exactly one vertex of attachment of
B on P, and moreover one of them contains the vertex y;.

(3) dr(xzo) =0 and dr(z) < 1 for each vertex x of attachment of B on P,
and

(4) drp(y1) =1 and dr(y2) < 1.
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(2.3.3) Let B, zo, y1 and y2 as in the Proposition (2.53.1) be given. Further
assume V(B) N V(P) = {xo}. Then there exists a spanning 3-forest F' in B
which contains exactly two components T\ and T5, such that:

(1) V(T1) = {y1} and 2o,y € V(T2).
(2) dr(zo) = dp(y2) = 1.

3. Spanning 3-forests in a bridge

In this section we give several properties concerning the existence of a span-
ning 3-forest in a bridge of a semiring, which are similar to those described in
the preceding section. The object here is to construct a spanning 3-forest satis-
fying certain desired conditions. The proofs are essentially the same as those of
[9], though the required conditions are partially changed, and therefore we only
present the main results without proofs.

(3.1.1) Let B be a bridge of type 1 of a tight (P, P')-semiring in an LV-graph,
and let zo T be the first and the last vertex of attachment of B on P, respectively.
Let further V(B) N V(P’) = {y}. Then there exist a spanning 3-forest F in B
and a component T of F such that:
(1) V(T)NV(PUP') = {zo,T}, and each of the remaining components of
F' contains ezactly one vertexr of attachment of (PUP’) — {xo, T}.
(2) dr(zo) =0, drp(Z) =1 and dp(x) < 1 for each vertex x of attachment
of B on P,
(3) dr(y) =0.

(3.1.2) Let B, zo, T and y as in the Proposition (5.1.1) be given. Then there
exist a spanning 3-forest F in B and a component T of F such that:
(1) V(T)NV(PUP’) = {z0,T,y}, and each of the remaining components of
F' contains ezactly one vertex of attachment of (P UP’) — {xo, T, y}.
(2) dr(zo0) = dr(ZT) = 1 and dr(z) < 1 for each vertex = of attachment of
B on P,
(3) dr(y) = 1.

(3.2.1) Let B be a bridge of type 2 of a tight (P, P')-semiring in an LV-graph.
Let further |V(B)NV(P)| > 2 and V(B)NV(P’) = {y1,y2}. Finally set z¢ and
T the first and the last vertex of attachment of B on P, respectively. Then there
exist a spanning 3-forest F in B and two components Ty and Ty of F such that:
(1) V(T1) N V(P U 'Pf) = {x(),f} and V(TQ) N V(P U 'Pf) = {yl, yg}.
(2) Each of the remaining components of F contains exactly one vertex of
attachment of (P) — {xo,T}.
(3) dr(zo) = dr(T) = 1 and dr(x) < 1 for each vertex x of attachment of
B on P,
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(4) dr(y1) = dp(ye) = 1.

(3.2.2) Let B, xo, T, y1 and y2 as in the Proposition (3.2.1) be given, and let
further |V(B) NV (P)| > 2. Then there exist a spanning 3-forest F in B and
two components Ty and Ty of F' such that:
(1) V-(Tl) N V(P U 73,) = {CC(),E, y1} and V(Tg) N V(P U P,) == {yz}
(2) Each of the remaining components of F' contains exactly one vertex of
attachment of (P) — {zo, T}.
(3) dr(zo) = dp(Z) = 1 and dr(x) < 1 for each vertex x of attachment of
B on P,
(4) dr(y1) =1 and dp(y2) < 1.

(3.3) Let B be a bridge of type 0 of a tight (P, P')-semiring in an LV-graph, and
let xo and T be the first and the last vertex of attachment of B on P, respectively.
Then there exists a spanning 3-forest F' in B and a component T of F' such that:
(1) V(T)NV(PUP') = {zg,T}, and each of the remaining components of
F' contains exactly one vertex of attachment of (P UP’) — {zo,T}.
(2) dr(z0) = dp(Z) =1 dp(x) < 1 for each vertex x of attachment of B on
P.

(3.4.1) Let B be a bridge of type 2 of a tight (P, P’)-semiring in an LV-graph.
Let further xo and T be the first and the last vertex of attachment of B on P,
and set {yi,y2} = V(B) NV (P'). Then there ezists a spanning 3-forest F' in B
such that:

(1) A component T of F' contains both T and y2, but it does not contain a
vertex of attachment of B on PU P’ — {Z,y2}.
(2) Each component of F —T contains exactly one vertex of attachment of

B onPUP,
(3) dr(zo) = 0 and dp(x) < 1 for each vertex x of attachment of B on P,
and

(4) dp(yl) S 1 and dp(yg) = 1.

(3.4.2) Let B, z9, T, y1 and y as in the Proposition (3.4.1) be given. Then
there exists a spanning 3-forest F' in B such that:

(1) A component T of F' contains the vertices xg, T and y2, but it does not
contain a vertex of attachment of B on P UP’.

(2) Each component of F — T contains exactly one vertex of attachment of
B onPUP.

(3) dr(zo) = dp(T) = 1 and dr(x) < 1 for each vertex x of attachment of
B onP, and

(4) dr(y1) £1 and dp(y2) = 1.
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4. Main tools

Let R be a tight (P, P’)-semiring in an LV-graph G and let P be a separat-
ing path in R with HUK = G and H N K = P. Further let H be infinite
and H®) ... H) be infinite components of H — P Since P is induced and
unbounded, there exist uniquely determined separating paths PV ..., P(") of
R’ satisfying the properties (see Proposition 3.1 in [8]):

(1) Each of the endvertices of P(*) is adjacent to an endvertex of the foot of
HDon P (i=1,...,r).

(2) For each bridge connecting P with (J;_; P there exists an index j €
{1,...,7} such that all vertices of attachment of B lie on P U P\Y), and
V(B)nV(PY)| <2.

(3) If V(B) N V(P®) = {z,2'} for a bridge B connecting P with | J]_, P,
z % 2', it must hold zz’ € E(P®).

Set W ... W) the feet of PV ..., P(") each of which contains an infinite
component of H — P. Then we can easily see that W), ... W) are edge-
disjoint. ‘

For j = 1,...,r, let us denote the endvertices of W) by z; and T;, and
those of PU) by y; and ¥;, in the clockwise order. Then we see that

POUWD U {z;y;, 2,7}

forms a cycle, which will be denoted by C9); in particular this cycle is induced
since PY) and W) are induced.

We will say that the subgraph, denoted by LY, of G induced by the vertices
not only on C) but also in the interior of the cycle a cell of P (with respect to
P)), and the bridges of R which lie in the interior of C) the inner bridges in
LU). Clearly the path P contains exactly r cells, namely L), ... L),

Remark. For j =1,...,r, we can in similar way obtain an edge-disjoint feet
Wl(] ). ,W,(li.) on P, since PU) is a separating path of G. We claim that
there exists at least one inner bridge (say B) in L) of type 1 or 2 with

VB)NVWY —2)#£0 and E(B)NEWY —g;) 0,

where Z; is the endvertex of Wl(j ) on W),

To see this, let us denote z; the another endvertex of Wl(j ), and suppose to
the contrary that the assertion is false. If y; = z;, then G is separated by the
vertices x; and Zj, which contradicts the 3-connectedness of G. On the other
hand, if y; # z;, G is in this case separated by Z; and the vertex adjacent to z;
on PU), a contradiction. '
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To describe our main results in this paper, we need to introduce some termi-
nology. Let T be a finite tree. We may say that a sequence of vertices (u1,... ,us)
with u; € V(T') and u; # u; (i # j) lies on a path in this order, if P; C P; for
i <jandi,j € {l,...,s}, where P; (and P;) is the w1, u;-path (u1,u;-path,
respectively) on 7. In this case, the edge incident to u; on the w;u;1-path is
called path-incident with u; in T (with respect to (ui,...,us)). In Definition
4.1 below, the same notation as the arguments above are used.

Definition 4.1. An induced semicycle P in an LV-graph satisfies the hypothesis
(1) (with Tp), if there exists a spanning 3-tree Tp in C(P) such that each
separating path P in P satisfies one of the following 3 properties [V1]-[V3]:
[V1] dr,(z) < 2 for all z € V(P).
[V2] There exists exactly one vertex wp on the u,Z;-subpath of P with
wp # X1, such that
(a) drp(wp) =3 and dp,(z) < 2 for all x € V(P) \ {wp}.
(b) If V(W) =: {op = wy,...,wy = u} (¢t > 1) for the Wp, u-subpath

W of P, then the sequence (wi,...,w;) in Tp lies on a path in this
order. '
[V3] There exists exactly one edge ép = up¥Up on the u,z;-subpath of P,
such that

(a) ép € E(Tp).

(b) dr,(ip) = dry(9p) = 3 and dr,(x) < 2 for allz € V(P)\ {ap, vp}.

(c) If V(W) =: {op = w1, lip = wa,...,w, = u} (£ > 2) for the ¥p, u-
subpath W of P , then the sequence (w1, ... ,w;) in Tp lies on a path
in this order.

We will call the vertex wp in case [V2] a 3-vertex of P, and the edge in case
[V3] a 3-edge of P.

Remark. From the definition above we easily verify the following:

(1) Every subsequence of a sequence of vertices lying on a path lies on the
same path. _

(2) If an induced semicycle P satisfies the hypothesis () with a spanning
3-tree and P is an element of P, then the vertex wp in case [V2] (or the
edge ép in case [V3]) lies on the foot W@ or on the u, z;-subpath of P;
i.e., neither the vertex wp nor the edge ép lies on the feet W2, ... | W),

5. Proof of the main theorem

For a given tight (P, P’)-semiring, we assume that the semicycle P satisfies
the hypothesis (1) with a spanning 3-tree T» in C(P). Let P be a separating
path in P and further set L1, ..., L(") the cells of P. Then, from the hypothesis
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(1) for the semicycle P, P satisfies one of the properties [V1]-[V3]. We will now
construct a spanning 3-tree Tp: in C(P’) which satisfies the hypothesis () with
Tp:. To do this, we first construct a spanning 3-forest for each bridge B of type
0. Such a 3-forest, denoted by Fp, in B can be obtained from , which satisfies
the assertions in the theorem. Then we set

Fy := U{Fp | B is a bridge of type 0}

(I) P satisfies [V1]

Fori =1,...,r, consider the cell LY. Since P fulfills the property {Vl], it
contains neither 3-vertices nor 3-edges; i.e., dr,(z) < 2 for all z € V(W®). We
choose a bridge (say By) of type 1 or 2 in L), Set further

V(P(z)) = {yz =V, Vis+..,V0s= gi}a
and for each j € {1,...,s}
¥, e { 0, if vj,v;41 € V(B) for a bridge B in L")
=

{vjvj41}, otherwise

For each bridge B of type 1 (or of type 2, respectively) (# Bo) in L), use (2.2.1)
(or (2.3.1), respectively) to obtain a spanning 3-forest Fp in B satisfying the
conditions in the lemma.

Now consider the bridge By. If By is trivial, then set Fg, := Bp. On the
other hand, if By is of type 2 and |V(By) N V(W ¥)| = 1, then, by using (2.2.2),
we may obtain a spanning 3-forest Fg, in By. We finally consider the case that
[V(Bo) N V(W) > 2. If By is of type 1, we use (3.4.1) to obtain a spanning
3-forest Fp, in By satisfying the properties in the lemma. But, if By is of type
2, then using (2.3.3) we also have a spanning 3-forest Fp, in By. Thus in any
case we obtain a spanning 3-forest Fp, in By.

Then, by denoting {i pw), ¥pw } := V(By) N V(P®), we finally set

{UB : br'td)ge FB} U [U?zl Yj} , if By is of type 1.

F(z) o— in L'*
[UB : bridge FB] U [szl Y]:l U {'&P(i)'ﬁp('i) }, if BO is of type 2.

in L®

and for each separating path P in P satisfying [V1]

| OF(I')

i=1

Tp:=Tp U U Fy
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Proposition 5.1. The constructed Tp is a spanning 3-tree in

Hp:=C(P)U

U L(i)} U[U{B | B is a bridge of type 0}] 

i=1

such that each of the separating paths PV (i = 1,---,7) satisfies one of [V1] —
—[V3] with respect to Tp.

Proof. From our construction we easily see that Tp is connected and contains no
cycles, and it follows that Tp is a tree. For: € {1,...,r}, since Fpg is a spanning
subgraph of a bridge B in L), we have V(F®)) = V(L(V), and therefore Tp is
a spanning tree in Hp. To verify that Tp is a 3-tree, consider the bridges B in
L9 If B is of type 0 (or of type 1 or 2, respectively), then we see

drg(To) = dry(Z) =0,
(or dpy(z0) =0 and dr,(Z) <1, respectively),

and thus dpe (z) < 1 for all z € V(W®). But, since dr,(x) < 2 from the
assumption, we conclude that dr,(z) < 241 = 3 for all z € V(W ). Since
for the remaining vertices z in Hp we can obviously have dTp(z) < 3, we have
shown that Tp is a 3-tree in Hp.

Now consider the bridge By. By noting that By is of type 1 or 2, we first
consider the former case. Let wpu) be the first vertex of attachment of By
on P®. From the choice of By we see that the vertex w pt) lies on the first
component of G — P in the natural order. Then, if Wpw = y;, P satisfies
the condition [V1]. On the other hand, if Wpw # v, then P satisfies in
this case the condition [V2] (with the 3-vertex Wpw: ). Now consider the case
that By is of type 2 with the vertices @i p¢:) and Up) of attachment on PO If
dr.(@pi ) = 3, then we use similar arguments to verify that P() gatisfies the
property [V3] (with the 3-edge @pu Opeiy ), since the edge is contained in Tp.
For the remaining cases we can obviously see that P(¥) satisfies the properties
[V1] or [V2] (with the 3-vertex ¥p(:)). The fact that the sequence on wWp), yi-
subpath (or 7pw), y;-subpath) of P lies on a path in this order follows from
the construction. 0

(II) P satisfies [V2]

For a bridge B in L) we may denote the x,Z-path on P by Pg, and set
Vg := V(Pg) \ {zo}, where z¢y and T are the first and the last vertex (in the
clockwise order) of attachment of B on P, respectively. In particular, if zp = 7,
we simply set Pg = {Z} and Vp = 0.



Spanning 3-trees in a 3-connected locally finite VAP-free plane graph 903

(1) The cell L&) (i =2,...,r)
From the hypothesis and the Remark in the preceding section we have dr,, () <

2 for all z € V(W®). In this case, using the argument similar to the case (I),
we can obtain a 3-forest F(9) which covers all vertices of L(%).

(2) The cell LV

Let wp the 3-vertex of P and let Bp and Y; (J = 1,...,s) be the form
described in Case (I). Set further

I= {B | B is a bridge in L with [V(B) nV(WD)| > 2}

and W the u, wp-subpath of P. We define a subset I of I" holding the following
property: .
Bel’ ifandonlyif VgnV(W)#0

Finally we set
A:={B | Bis a bridge in L) with &p € V3 |

If A = (), applying the similar process as in (I), we obtain a spanning 3-forest
FO jn LM,

Now we assume that A 7& (. From the definition of wp, for each B € A there
exists exactly one bridge B € A such that all vertices of B — Pp are contained
in a facial cycle of B. If B is of type 0, then we use (2.1) (in the case By € I')
or (3.3) (in the case By € I') to obtain a 3-forest Fg in B. To 1nvest1gate the
remaining bridges (of type 1 or 2) we classify in two cases.

Case 1: B is a bridge of type 1 or 2 with B # By.

We first consider the case B ¢ I'. If B is trivial, then set Fg = (). Otherwise
(i.e., B is of type 2 with |[V(B)NV (W®)| > 2) we use (2.3.1) to obtain a 3-forest
Fp in B satisfying the properties in the lemma. Now consider the case B € I.
In the case B ¢ I, there exists a 3-forest Fip in B by (2.2.1) or (2.3.1) if B is of
type 1 or 2, respectively. On the o'cher hand, if B € IV, using (3.1.1) or (3.2.1)
we also have a 3-forest F'g in B.

Case 2: The bridge By.

First consider the case that By is of type 1. _If By is trivial, then we set
Fp, := By. Now let By is nontrivial. If Vg, N V(W) = 0 (i.e., B ¢ I), then we
use (2.2.2) to obtain a 3-forest Fig,. On the other hand, if Vg, N V(W) # 0, we
also have such a 3-forest Fg, by (3.1.2).

We now investigate the case that By is of type 2. If By ¢ T', then we in
similar way have a spanning 3-forest F'ig, in By. Otherwise, by (3.4.1) (or (3.4.2),
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respectively) there exists a spanning 3-forest Fig, in By in the case x¢ ¢ W (or

xo € W, respectively), where xp is the first vertex of attachment of By on w (@
in the clockwise order.

Combining the results in Case 1 and Case 2 we finally define:

I:UB : bridge FB:I U [szl Yj] , if By is of type 1.
F(i) = in L(®
}\UB : bri(d)ge FBJ U [szl Yj] U{tpwTpw}, if By is of type 2.
in L\
where {iipe), Upw } :=V(Bo) NV(P®)and Y; (j =1,...,s) are defined in (I).

To define a spanning 3-tree Tp by summing up the constructed 3-forests F(*)
(i=1,...,r)in each cell LY, we need to define a set of edges E; C E(Tp) as
follows:

Let W be the @wp, u-subpath on W, and set

T .= 'y {é’ BO}: if V(BO) N V(W(l)) = {f} and T € W
I'"u{B}, otherwise
For each bridge B in I’ U {E}, we set

_ { the first vertex of B on W), if wp ¢ Vp
rp =

wp, otherwise

If By € I and {7} = V(B)NV (W), then we set Tp, = Z. Then we obviously
have Tp # ZTp, for bridges B and B’ with B # B’. Since the sequence of vertices

on W lies on a path in this order (by [V2]), there exists an edge (say ep) which
is path-incident to Tg in Tp for each B € I'”. We set then F; := {ep | B € T"}.

" By means of the set of edges E, we finally set

Tp =

r
Tp U (U F(z)) U {xlyl} U FO} - E1

i=1

in case of By €T and |V(Bo) N V(W1)| =1, and otherwise set

.
Tp = Tpu<UF<i>)UFO — E;.
=1 .
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Proposition 5.2. The constructed Tp is a spanning 3-tree in

Hp :=C(P)U [U L(")} U [U{B | B is a bridge of type 0}]

i=1

such that each of the separating paths P (i =1,.--,r) satisfies one of [V1] —
—[V'3] with respect to Tp.

Proof. For each cell LY (i = 2,...,r) we adapt the arguments similar to those
in the proof of Proposition 5.1. We now consider the cell L(1). If A = ), then we
also use the method similar to that in the case (I) to obtain a spanning 3-tree
Tp in Hp satisfying one of the conditions [V1]-[V3].

Now assume that A # ). First, we investigate the graph H := FO U Tp.
Set B € I'" U {B} with the first vertex zp and the last vertex Zg on P, in
the clockwise order. Since we have used the results in (3.1.1), (3.1.2), (3.2.1),
(3.2.1) or (3.4.2) in the construction of Fig, we can conclude that dp(ZTp) < 4
(or dy(wp) < 4,if B= E) and there exists a x g, zg-path in Fp.

On the other hand, since Tp is a tree with zg,Zp € V(Tp), we can also
have a g, Tp-path in T». But, since the two z g, Zg-paths are disjoint (except
for the vertices zp and Zpg), we obtain a cycle (say Cg) in H containing zp
and Tg. From the fact that the sequence of vertices of wp, u-path on P lies on
a path, it follows that eg € E(Cpg). For two bridges B, B’ with B # B’, we
can also have |V(Cp)NV(Cp/)| <1, and therefore we conclude that H —ep is
connected and further dy—.,(ZTg) < 3 and dy_.,(wp) < 3. If By € I'; with
a vertex Tp, of attachment on P, then there also exists a cycle Cp, in H with
zT1y1,€B, € E(Cg,), such that H — ep, is a connected subgraph of H. Since
x1 # Tp, from the choice of By, we can in similar way show that the vertex Tp,
has the degree at most 3 in H — ep,, which follows that H — K is a spanning
3-tree in C(P) U LY. Thus we have shown that Tp is a spanning 3-tree in Hp.

It remains to prove that P(*) satisfies one of the conditions [V1]-[V3]. But,
by using similar method in Proposition 5.1, we can without difficulty verify the
assertion, and thus we omit to describe it. Note that, in this case, P(*) satisfies
[V1] or [V2] if By is of type 1, and [V1]-[V3] if By is of type 2. O

(IIT) P satisfies [V3]

First we consider the cells L(¥) (i = 2,...,7). From the condition [V3] and the
Remark in the preceding section, we have dr, (z) < 2 for each z € V(W ())\{xz,},
where x, is the first vertex of W(?)in the clockwise order. (It may noted that
it is possible for the vertex z» to be incident to the 3-edge ép.) In this case we
use the case (I) to obtain a 3-forest F(¥) in W (9, -
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Now consider the cell L{!). Let ép = iptp be the given 3-edge of P and 7%
the ©p, u-subpath of P with ép € E(W). Set further

A :={B | B is a bridge in LY with 7p € Vz}.

Recall that Vg = V(Pg)\{zo}, where Pg is the z(, Z-path on P.

If A = {), we apply the process similar to that in the case (I) to obtain a
3-forest F(!) in W), We now consider the case A # . For each B € A, let us
denote B € A the bridge in A, in a facial cycle of which all vertices of B— Pg are
contained. -Let further By be the bridge introduced in (I). By setting I and I/
as in the case (II), we use the same arguments similar to the case (II) to obtain
a 3-forest Fg, for each B € T (including B and By). If we set Y; (j=1,...,s)
as defined in the case (I), we finally define

{UB : bri(_ige FB} U {U;zl Y]} 5 if B() is of type 1
F(z) = in L)
{UB : bri(c_i)ge FB}U [szl Y]] U {'&p(i)’ﬁp(i) }, if By is of type 2
in L\*
where {ipw,Tpw } :=V(Bo) NV(P®)and Y; (j = 1,...,s) are defined in (I).
Now we choose a set of edges E; C E(Tp) as in the case (II), by replacing
vp by wp. It may be noted that it is possible to be vp = T;. Then, since

ép € E(Tp) by [V3], it must be hold ép € E;. We finally set

r
Tr U (U F(i)> U {xlyl} U Fy

1=1

TP = _E17

if By € T and |V(Bo) N V(WM)| = 1, and otherwise

,
Tp = {Tp U <U F“’)) U Fp

1=1

- E;.

Proposition 5.3. The constructed Tp is a spanning 3-tree in

, T _
Hp:=C(P)U [U LW] U [U{B | B is a bridge of type 0}]

i=1 "
such that each of the separating paths PV (i =1,--- 1) satisfies one of [V1] —
—[V3] with respect to Tp.

Proof. Using an argument similar to the vertex wp in the case (II), we can also
obtain dr, < 3. Since ép € Kj, it follows that ép € E(Tp), which implies
dr, < 3. The remaining assertions can be proved by the analogous arguments
as in Proposition 5.2. U

Now we summarize Proposition 5.1, 5.2 and 5.3.
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Theorem 5.4. Let R be a tight (P, P’)-semiring in an LV-graph, such that the
semicycle P satisfies the hypothesis (f) with a spanning 3-tree Tp in Z(P). Then

Tpr :=U{Tp | P is a separating path in P}

is a spanning 3-tree in Z(P’) with Tp C Tp: such that the semicycle P’ satzsﬁes
the hypothesis (1) with Tp:.

Proof. The fact that Tp is a spanning 3-tree in Z(P’) follows from Proposition
5.1, 5.2 and 5.3, by considering the uniqueness of P’. Let P’ be a separating
path in P’. By the structure properties in Section 2 we have a separating path P
in P such that each of the endvertices of P’ is adjacent to one of the endvertices
of P. Since R is tight and P satisfies one of [V1]-[V3], it follows that P’ also
satisfies one of [V1]-[V3], and consequently P’ satisfies the hypothesis (f) with
Tp:. -4

As seen in the structure properties in section 2 for an LV-graph G and for
an arbitrary given induced semicycle Py in G, there exists an infinite sequence
of pairwise disjoint induced semicycles (P, P1, P2, ... ), whose union covers all
vertices of G. To use this property in this article, we shall need to define an
induced semicycle Py as a ’starting’ semicycle. To do this, let us choose an
arbitrary edge ey = xoyp incident to an unbounded face of G. Then we clearly
have the unique facial cycle (say Cj) containing the edge ey. We may denote
Py the zg, yo-path on Cy which does not contain the edge ey. Then it is not
hard to see |V(P)| > 3, and moreover, since G is 3-connected, no vertex of
V(Po) \ {zo0,y0} is incident to an unbounded face, which implies that Py is a
separating path in G. Also, from the same reason, the path P in particular is
induced. By setting Py := { Py}, we obtain an 1nduced semlcycle with C (Po)
Co. We can now prove the main result in this paper. ,

Proof of Theorem C. Let G be an LV-graph and let Py is an induced ’starting’
semicycle in G obtained from the method above. Then, by the structure theo-
rem in Section 2, there exists an infinite sequence of pairwise disjoint induced
semicycles (Pg, P1, P2, . ..) such that

(1) Pj - C(Pj+1) for all j € {0, 1,2,.. .},

(2) (Pj,Pj+1)-semiring is tight, for all j € {0,1,2,...}; and

@) G= U;’io C(P;)-
Obviously Ty := P, is a spanning 3-tree in Cy = C'(Py) satisfying the property
[V1], and thus Py fulfills the hypothesis (1) with Tp.

Now assume that, for j > 1, a spanning 3-tree T; in C(P;) is constructed,
such that P; satisfies the hypothesis () with T;. Then, by Proposition 5.1, 5.2
and 5.3 and the fact that the (P;,P;;+1)-semiring is tight, we again obtain a
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spanning 3-tree T;,1 in C(P;41) with the corresponding properties. Therefore
we have a sequence of 3-trees (Ty, T1,Ts,...) in G with

T, C Tjyr and V(Tj)=V(C(P;) forall je{0,1,2,...}

By setting T .= j=0 I3, we get a spanning 3-tree in G, and therefore our proof
is complete. U
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