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NOTE ON CONNECTED (g, f)-FACTORS OF GRAPHS
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ABSTRACT. In this note we present a short proof of the following result by
Zhou, Liu and Xu. Let G be a graph of order n, and let a and b be two
integers with 1 < a < b and b > 3, and let g and f be two integer-valued
functions defined on V(G) such that a < g(z) < f(z) < bforeachz € V(G)

2
and f(V(G)) — V(G) even. If n > CH=D"HL anq §(G) > ) then G

has a connected (g, f)-factor.
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1. Introduction

All graphs considered in this paper will be finite undirected simple graphs.
Let G be a graph with vertex set V(G) and edge set E(G). The degree of a vertex
z is denoted by dg(z). Set §(G) = min{dg(z)|z € V(G)}, the minimum degree
of G. For any S C V(G), we denote by G[S] the subgraph of G induced by S,
and G — S =G[V(G) \ S]. Let g and f be two integer-valued functions defined
on V(G) such that 0 < g(z) < f(z) for all z € V(G). Then a (g, f)-factor of G
is a spanning subgraph F' of G satisfying g(z) < dr(z) < f(z) for all z € V(G).
If F is connected, we call it a connected (g, f)-factor. For convenience, we write
de—s(T) = Y per do—s(@), F(S) = $es £(z) and 9(T) = X7 9(a).

Many authors have investigated factors [1-5], connected factors [6-8], and
factorizations [9,10]. Zhou, Liu and Xu gave the result about connected (g, f)-
factors by the minimum degree and the order of a graph G [11]. In this note we
present a short proof of the following result [11].

Theorem 1. Let G be a graph of order n, and let a and b be two integers with
1<a<bandb>3. Let g and f be two integer-valued functions defined on
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V(G) such that a < g(z) < f(z) < b for each x € V(G) and f(V(G)) - V(G)
even. If '

_1)\2
nz(a—}—b 1)*+1
a
and

(b—1)n

> /7
5(G)“‘a+b—1’

then G has a connected (g, f)-factor.
The short proof of Theorem 1 relies heavily on the following results.

Theorem 2. 2 Let G be a graph of order n > 3. If the minimum degree of G
is at least %, then G has a Hamiltonian cycle.

Theorem 3. 13! Let G be a graph of order n and let a and b be integers with
1 < a < b. Let h be an integer-valued function defined on V(G) such that
a < h(z) < b for each x € V(G) and h(V(G)) =0 (mod 2). If

"> (a+b)(c;+b—3)

and
bn

>
8(G) 2 a+b’

then G has an h-factor.

Theorem 4. 8 Let G be a graph, and let g and f be two positive integer-valued
functions defined on V(G) such that g(z) < f(z) < dg(z) for each x € V(G). If
G has both a (g, f)-factor and a Hamiltonian path, then G contains a connected

(g, f + 1)-factor.

2. The proof of theorem 1

We now prove Theorem 1. Let G be a graph which satisfies the conditions
of Theorem 1, and §(G) the minimum degree of G. By n > (G—H’_a;)%l > 3,
0(G) > ((ll:bl_)? > £ and by Theorem 2, G has a Hamiltonian cycle.

Define a function h : V(G) — Z as h(z) = g(z) for any z € V(G) if g(V(G)) =
0 (mod 2); otherwise h(z) = g(z) for any z € V(G) \ {v} and h(v) = g(v) + 1,
where v is any vertex in V(G) with g(v) < f(v) — 1. Note that such a vertex
v exists because if g(z) = f(z) — 1 for any z € V(G), then 1 = g(V(G)) =
f(V(G)) — |V(G)| (mod 2), which contradicts the assumption of this theorem.

Then G has an h-factor since G satisfies all the conditions of Theorem 3. In
fact, a < h(z) < b -1 for each z € V(G), h(V(G)) =0 (mod 2),

2
n> (a+b—al) +1 S (a+(b—1))((;+(b—1)—3)

(b—1)n
a+b—-1

9

and
3(G) >
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Since G has both a Hamiltonian cycle and an h-factor, i.e. a (g, f —1)-factor,
by Theorem 4, G has a connected (g, f)-factor. This completes the proof of
Theorem 1. | 0O

Remark. Let us show that the condition 6(G) > S:bl_)?

replaced by §(G) > flb_;bl_)?—l. Leta=b—1>1,t>2be three in_tegérs, g(z) =a

and f(z) = b for each z € V(G), and G = K41 U K(p—1)t+1. Then we have
n=|V(G)| = (at+1)+((b—1)t+1) = 2at 42 > D FL ¢(y(3)) - |V (G)|

evenand §(G) =at =22 =2 —1= g:bl_);’ — 1. Obviously, G satisfies all the
conditions of Theorem 1 excepting that §(G) > g’;—;}?— and G is a disconnected

graph. Thus, G hasn’t a connected (g, f)-factor. In the above sense, the result
in Theorem 1 is best possible.

in Theorerh 1 cannot be
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