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METHODS FOR ITERATIVE DISENTANGLING IN
FEYNMAN’S OPERATIONAL CALCULI : THE CASE OF
TIME DEPENDENT NONCOMMUTING OPERATORS

BYUNG MOO AHN

ABSTRACT. The disentangling map from the commutative algebra to the
noncommutative algebra of ‘operators is the essential operation of Feyn-
man’s operational calculus for noncommuting operators. Thus formulas
which simplify this operation are meaningful to the subject. In a recent
paper the procedure for “methods for iterative disentangling” has been es-
tablished in the setting of Feynman’s operational calculus for time indepen-
dent operators Ay, - - - , An and associated probability measures pi, - - , tn.
The main purpose for this paper is to extend the procedure for methods
for iterative disentangling to time dependent operators.
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1. Introduction

This paper extends the basic result of Jefferies, Johnson and Kim [7] on ¢
methods for iterative disentangling ” to the time-dependent and not necessarily
probability measure setting. Feynman’s operational calculus for noncommuting
operators originated with Feynman’s 1951 paper [2] We are working here in
the framework of the Feynman’s operational calculus initiated by Jefferies and
Johnson [3,4,5,6] and by the same authors and Nielsen [8].

Passing from probability measures to measures which are finite on any bounded
interval of R is not difficult as discussed in [4], but time-dependence of the op-
erators as in [8] yields a more complicated framework and so a somewhat more
complicated proof than in [7]. However, the most essential ideas of the proof
remain the same.

Let X be a separable Banach space over the complex numbers and let £(X)
denote the space of bounded linear operators on X. FixT > 0. Fori=1,---,n
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let A; : [0,T] — £(X) be maps that are measurable in the sense that A; ' (E) is
a Borel set in [0,T] for any strong operator open set E C L(X). To each A;(-)
we associate a finite continuous Borel measure y; on [0, T] and we require that,
for each 1,

. = / 11A(8)] 20y i (ds) < oo.
[0,7)

For n positive numbers 7y, ,7,, let A(ry,---,r,) be the space of complex-
valued functions of m complex variables f(z1,---,z2,), which are analytic at
(0,---,0), and are such that their power series expansion
x0
f(z1,-+,2n) = Z Crmy e mn 2y 2N
my, - yMy =0

converges absolutely, at least on the closed polydisk |z1| < 71,- - ,|2zn| < rp. Such
functions are analytic at least in the open polydisk |z1| < r1,---,|2n| < rp-

To the algebra A(ry,---,r,) We associate as in [3] a disentangling algebra

by replacing the z;’s with formal commuting objects (A4;(-), uiJ, 1 = 1,---,n.
Rather than using the notation (A;(:),u;) below, we will often abbreviate to

A;(-). Consider the collection ]D((Al(-), u1)s e, (An(s), unT) of all expressions
of the form :

f(Al(')y’;"yAn('T>= i cml,...,mn(Al(.y)ml...(An(.y)m"

my,: - vmn:()

where ¢, ... m, € C forall my,---,mp, =0,1,---, and

D(A1(:) ), An ()

[feas(r s ann|| = [|lFAilr - 4nn)| .

= > lem o < co M)

My,e =0

The function on D((A1(~),u1)', e ,(An(-),pn)”) defined by (1) makes
D((Al(-), 1)y (An(), unf) into a commutative Banach algebra [8].

We refer to ]D)((Al(-), 1)y (An(e), ,unf) as the disentangling algebra as-
sociated with the n-tuple ((Al(-), 1l (An(), un)').

We will often write ID in place ofD(Al(eT, e ,An(-T) or._D((Al(-), L),

(An(), 1n). |
Form =0,1,---, let'S;, denote the set of all permutations of the integers
{1,---,m}, and given ™ € S,,, we let

Am(ﬂ') = {(81, ,Sm) € [O,T]m :0< Sr1) < < Sp(m) <T}
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Now for nonnegative integers my,---,m, and m = my + - - - + m,, wé define

Al(S), ’I,f’be {1, ,ml}
Ci(s) = 'f%z’('s), ifie{mi+1,---,m +ma}

An(S), ifie{m1+~--+mn_1+1,---,m}
fori=1,---,mand forall 0 < s <T.

Definition 1. Let P™1 " ™Mn(z ... z,) = 2z[" -2, We define the disen-
tangling map on this monomial by

Ty o, P (/h(-)”, .. ,An(~T)
= ((Al(.)“)mx . (An(.y)mn)

Z / m)(sﬂ-(m)) ﬂ(l)(gfr(l))

’II”ES Am 7r
(™ X oo x i )(dsy, i)

Finally for f € D((Al()a MIT: T (An()’ /vtny) given by :

HAT - A) = emm (107) ™ (407) ™

My, ;mn:()

we set

T s (A2(T5 -+, An(T)

x

»5= Z Coy o ,mn?;u,m ‘Hﬂpml,.-- JMn (Al()"? . ,An()v)

my, e My =0

We will often use the alternate notation indicated in the next two equalities :

Pm1 u?:ﬂ (Al(')> T n( )) Ml, ToHn pri (Al(")v’ e ’An(‘)j
and

furein (A0 An0) = Tor s f (AT, 40l

2. Methods for iterative disentangling

Let d be a positive integer. For each j = 1,---,d, let I; be the nonempty
subset of I = {1,--- ,n} such that I; = {i;_; + 1, -+ ,¢;} Where 20 = 0 and let
Iy=I-(LuU--- U I;). Now we introduce the abbrev1ated notation. We write

P (A7 1) = B (40, 400
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as well as

F(ariien) = (AT, Al T),

D(4i(-T,i € I) =D(A1(T, -, 4n(]),

f(zi’GI) =f(zla"' ,Zn)a
TovierS (A T) = Ty F (A1 (T An(T):
Similar interpretations are intended when we write
g(zivi € Ij)v 7:/1,'-- Wil i€lo

and so on.

We begin with the case of monomials first.

Theorem 1. Let aj,b;j,j =1,---,d be real numbers such that
0<a1<bi a3 <by<---<ag<bs<T.

Suppose that pi,i € I; have supports contained within [a;,b;] for j =1,--- ,d.
Let vj,j = 1,---,d, be any continuous probability measures having supports
contained within [a;,b;]. Given nonnegative integers my,--- ,my, let

forj=1,.--,d. Then we have
P (4100, An()
= Pyll’m‘l;mi!ielo (R’la e ;K’d§ Az()’@ € IO) . (2)

,Ud;m‘iEIp
Proof. Since the measures {1 are supported by [@1,b1] and the measures p;,1 €
I — I are supported by [0, a1] U [b1, T], by applying Theorem 1 of [1], we obtain

ngl’/;:fn (Al(;)v e ,An(,)) — Pul;ms,ielwll (Kl; Ai(-),i el — 11)-

i i€l~I

Since the measures uo are supported by [a2,bs] and the measures vy, pi, ¢ €
I—(I;UI) are supported by [0, az]U [be, T], by applying Theorem 1 of [1] again,
we have
o (A0), -, An()
_ pl.lmgdel—(I;Ul2) — ,
= Py ) (K Koy Ai) i€ = (LU ).

antinuing this way through d steps, we arrive at (2). O

Corollary 1 follows immediately from the theorem just above.
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Corollary 1. Let py,- -, i, be given as in Theorem 1. Suppose Iy = 0, that
is, = I, U---UlIy. For any nonnegative integers mi,-*- ,my we have

prmi me (Al('), . ,An(')) =Ky - K;

Bl sl

= PPl (A ie In) - PRSt (A)i e ).

Now we come to the theorem which allows us to iteratively disentangle a
multilinear factor from 7,,, ... ,#nf(Al(-)v, e ,An(~)'>, where f(z1,---,2p) is an
appropriately factorable analytic function of z1,- -+, 2.

Theorem 2. Let i1, ,n and v1,--- ,vq be given as in Theorem 1. Assume
that g; (A@-(-)”,i c Ij) e D(Ai(-y,i e Ij) forj=1,---,d and h(Ai(-)”,i e Ig) e
H})(Ai(-)“,i e 10). Let

d
f(zla"'yzn)z Vng(ziaiEIj) h(ZuZE-{O) (3)

=1
and let 3
K = Ty, ic1,95 (Az:(')vai € Ij)
forj=1,---,d. Then f(Al(-)j--. ,An(-)‘) elD)(Al(-)”,--- ,Aﬁ(-‘y) and

7;113"' sunf(Al(.)\; e ?An(')v)
= 71'/1,”' ,Ud§#z',i€IoF(R{7 e akcli; AZ():@ € IO) (4)
where F(wl, e, W Ziy 1€ Io) = wr, -, wah(zi,i € Ip)..

Proof. Each g;,j = 1,---,d, belongs to the disentangling algebra ID(AZ- (-7,

i € Ij) and h belongs to D(A;(-),¢ € Iy). Further, the union of the index

sets, Iop U I, U---U Iy, is pairwise disjoint. Thus f, defined as the product (or
elementary tensor) on the right-hand side of (3) is an element of A(rq,---,m5),

and so f(Al(-T, e ,An(-f) belongs to lD)(/h OIEEE ,An(-T).
Since the measures p;,¢ € I; are supported by [a1, b1} and the measure p;,i €
I — I, are supported by [0,a;] U [b:T], by applying Theorem 3 of [1], we obtain

7;;1,---,u,1f(<41('77 e 7An(‘)v) =T, ici-1, F1 (f(i;Az‘(')vyi €l— 11),

where

Fl(wl; 2,1 € I — Il) =w H gj(zi,i € Ij) h(zi,i € Ipy).

Jj=2
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Since the mieasures y;, @ € I are supported by [az, bg] and the measures vy, p;,1 € -
I—{IUI,) are supported by [0, az]U [bs, T, by applying Theorem 3 of [1] again,
we have

Tuse i (A1CT5 o An(T)
= Toy vaspiiel~(LuL) F2 (f({v Kév Ai(-J;iel—-(Lu IQ))
where
d .
Fo(wy, we; 25,1 € I — (11 U L)) = wiws ng(zi,i € L;)| h(z,1 € Ip).
i=3
After d steps, we arrive at the formula (4). ; O

Corollary 2. Let uy,- - , itn, and f(21,- - - 2,) be given as in Theorem 2. Suppose
I=1U---Uly. Then we have

Torroe i f (A1 (T An(T) = K- K
= Lp;,ielqs9d (A%(Y,Z € Id) o Ty ien, 1 (Az(TJ € 11)-
Again we deal with the case of monomials first and then under the assumption
that =L UL U---UlI4.
Theorem 3. Let a;,b;,7 =1, - ,d be a real numbers such that
| 0<ag<-<ar<ar<b<b<--<bg<T

Suppose that p;,i € I; have supports contained within [a;,a;—1] U [bj—1,b;] for
j=1,---,d where ap = by and by = a1. Letn;, j =1,---,d, be any contin-
uous measures having supports contained within [a;,b;]. For given nonnegative
integers my, -+ , My, let

1m; 3€]; .

Lj= Pnji;;iiéfj (Lj?l; Ai(),i€ Ij) (5)
for j = 1,---,d where Ly 1is the identity operator and mp is any continuous
probability measure having support contained within [ai,b1]. Then we have

T _ plimi.i€el . .
B (Al(')a e ,An(')) = P iely (Ld’ Ai("),1 € IO)' (6)

Proof. Since the measures p;,7 € I; are supported by [a1,b:1] and the measures
i, i.€ I are supported by [az, a1] U [b1, b2], by applying Theorem 1 of [1], we
obtain

priiehuls (A;(-),z' enu 12) — plmiicls (Ll;Ag(-),z' e 12)

pi i€l Ul nipi i€l
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which is the operator L, as defined in (5). Since the measures u;,¢ € I; Ul are
supported by [az, b2] and the measures p;, ¢ € I3 are supported by [as, az]U[bs, bs]
by applying Theorem 1 of [1] again, we have

prmii€huk Ul (A,-(-),z' eLULU 13) = plmii€ls (Lg; Ai()ie 13)

pi i€ UI2UI3 N2, €13
which is operator L3z. Continuing this way we obtain (6). O
Corollary 3. Let p1,--+, 4, and m1,--- ,nq be given as in Theorem 3. Suppose
I=5L UL U---Ul,. For any nonnegative integers my,- -+ ,m, we have
prs e e (Al(-), . ,An(-)) —
1;mg i€l ) .
Pndml ;G ZdEId (Ld‘l’ A’()’ 1€ Id) (7)

where Lg—1 ts given inductively by the formula (5). Equation (7) can be expressed
more explicitly by the formula

P (A10), - An()

_ Pl;mi,’iEId Iymg,i€lg—1 ( . ( 1m1 2612( m;,1€1
Nd—134i,8€1g \* ng—2;p5,0€1q—1 M1304,1€ 12 ;zmelx

(Ai(-),i € I); Ai(),3 € In); - -+ ); Ai(+), 0 € Ig-1); Ai(-),5 € Id).
Now we come to the second mainvresult.

Theorem 4. Let puy,---,un and n1,---,nq be given as in Theorem 3 and let

flz1,-++, zn) be given as in Theorem 2. For each j =1,---,d, let

Fj_.l(wj_l; Zi, 1 € IJ) = wj—lgj(ziai € Ij) (8)
and

Ly = Ty ssien, By (L oys As(Thi € 1) (9)

where wy = 1, Ly is the identity operator and no is any continuous probability
measure having support contained within [a;,b1]. Then

T (AT 40(T) = TsereF (L AT € 1) (10)
where F(wg; 2;,1 € Ip) = wgh(z;,1 € Ip).

Proof. Applying Theorem 3 of [1] to the function (g1 ® g2)(z;,7 € I; U L), we
obtain

Ty ienuls (91 ®gz)( (Tienu 12) Tovpiael, F1 (Ll,A (-),i€ 12)

where Fy and L} are given by (8) and (9), respectively. Note that

L) = T,,.icnul (91 ®gz)(4 (-T,iel, UIz)
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and apply Theorem 3 of [1] again to the function (g1 ® g2 ®¢3)(2i, 1 € I} UL UI3),
Then we have

T, ienuluI:(91 ® 92 ® g3) (Aé('y,i eLULU I3>

= Topspiicls F2 (E,Q, Ai(-T,i € Ig)

which is the operator L} as defined in (9). Continuing this way we obtain
(10). ' 0

Corollary 4. Let pi1,-++ , fins M1, - ,Nd and f(z1,- - zn) be given as in Theorem
4. Suppose I =1, U---UI,. Then we have

Tm’...,ﬂnf(Al(')v, Ty An(‘T) = Ly

= 7]d—1§.u-i7i€IdFd—-l <E:1_1, Az(ﬁl € Id)

where Fy_1 and L!,_, are given inductively by the formulas (8) and (9) respec-
tively.
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