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STRONG CONVERGENCE OF A NEW ITERATIVE
ALGORITHM FOR AVERAGED MAPPINGS IN HILBERT
SPACES

YONGHONG YAO*, HAIYUN ZHOU AND RUDONG CHEN

ABSTRACT. Let H be a real Hilbert space. Let T : H — H be an averaged
mapping with F(T) # 0. Let {an} be a real numbers in (0,1). For given
xg € H, let the sequence {z,} be generated iteratively by

Assume that the following contrel conditions hold:

(i) limp—oo an = 0;

.o o
(ii) ano Qp = 00.
Then {z,} converges strongly to a fixed point of T'.
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1. Introduction

Let H be a real Hilbert space, and C' a closed convex subset of H. Recall
that a mapping S : C — C is said to be non-expansive if

15z — Sy|| < [lz —yll,

for all z,y € C. A mapping T : C — C is called an averaged mapping on C if
there exists a non-expansive mapping S : C — C and a number k € (0, 1) such
that
T=01-k)I+ES. (1)
A point z € C is a fixed point of S provided Sz = z. Denote by F(S) the set
of fixed points of S; that is, F(S) = {x € C : Sz = z}. If F(S) # 0, then we
obtain immediately that F(T) = F(S).
It is clear that an averaged mapping is non-expansive, but not vice vera.
An example of an averaged mapping is the metric projection from a Hilbert
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space onto a closed convex subset. It is known that averaged mappings are al-
ways asymptotically regular and their Picard iterates converge weakly. These
properties make averaged mappings favorably useful in applications in e.g. in-
verse problems and image recovery (see [1-5]). In recent years, some iterative
algorithms have been proposed for approximating fixed point of non-expansive
mappings under some assumptions, please see [6-12]. You can find the related
works in [13-26].

It is our purpose in this paper that we introduce a new 1terat1ve algorlthm for
averaged mappings. Furthermore, we prove that the proposed iterative algorithm
converges strongly to a fixed point of an averaged mapping in Hilbert spaces.

2. Preliminaries
In this section, we collect the following well-known lemmas.
Lemma 2.1 Let H be a real Hilbert space. Then there hold the following well-
known results: _
@) llz+yl> < llz> +2(y,z +y) for allz,y € H;
(i) |z —ylI* = llzl|® - 2z, y) + llyl|* for all z,y € H.

Lemma 2.2 (Demi-closed principle) Let C be a nonempty closed convez of a
real Hilbert space H. Let S : C — C be a non-expansive mapping. Then S is
demi-closed on C, i.e., ifx, =z € C and z, — S, — 0, then z = Sz.

Lemma 2.3([6]) Assume {a,} is a sequence of nonnegative real numbers such
that

An4+1 < (1 - ’Yn)an + 'Yn(sna n 2> 0,

where {vn} is a sequence in (0,1) and {0} is a sequence in R such that

(1) Z n=0 Tn = OQ;

(i) limsup,,_ ., 0, <0 or Z 0 |6n7n1 < 0.

Then lim, o an, = 0.

3. Main results
In this section, we will prove our main result.

Theorem 3.1 Let H be a real Hilbert space. Let T : H — H be an averaged
mapping with F(T) # 0. Let {ay,} be a real numbers in (0,1). For given o € H,
let the sequence {x,} be generated iteratively by

Tnt1 = (1 —an)Tx,,, n=>0. (2)

Assume that the following control conditions hold:

(i) limy,—~ an, = 0

(ii) 3o = 00.



Strong convergence of a new iterative algorithm for averaged mappings 941

Then {x,} converges strongly to a fized point of T.
Proof. First, we prove that {z,} is bounded. Take p € F(T'). From (2), we have
[#n+1 = pll = [[(1 = o) Tzn — p
= [|(1 = an)(Tzn — p) — anp||
< (1 = an)llzn = pll + anllpll-
By induction, we can obtain
zn —pll < max{||zo — pli, lIpll}-

Hence, {z,} is bounded.
Since T is an averaged mapping, from (1), there exists a non-expansive map-
ping S: H — H and a constant k € (0, 1) such that

T=(1-k)I+kS.

It is clear that F'(T') = F(S). Since S is non-expansive, hence we have

(Sz —p,Sz —p) <(z—-p,z—p)
= (Sz—p,Sx~p)<{x—-p,x—Sz)+ (x—p, ST —Dp)
= (Sz—p,St—z) < (z—p,x— Sx) (3)
= (Sz—z,5z—z)+ (x—p,Sz—z) < (z —p,z— Sx)
= ||Sz —z|* < 2(z — p,z — Sz).

Setting y, = Tz, = (1 — k)z, + kSz,,n > 0. From (2), (3) and Lemma 2.1,
we have

Iznt1 = pl* = (1 = an)yn — pII?
= [[(1 = an)(¥n — p) — anpll®
< (1 - an)?llyn — 2l = 200 (P, Tnt1 — 1)
Slzn —p—k(zn — an)[|2 — 20(p, Tn+1 — P)
= ||zn — p||* — 2k(zp — ST, Tn — D) + k2|20 — Sz ||? (4)
— 2ap(p, Tpy1 — D)
< llzn = ol = kllzn = Sza || + K [|2n — S22 |®
— 2ap(p, Tpy1 — P)
= [lzn = plI* = k(1 = k)||&n — Szn||* — 20 (P, Tns1 — P).
Since {:cn} is bounded, so there exists a constant M > 0 such that
| —20, (P, Tyt —j)) < Ma, forall n>0.
Consequently, from (4), we get
lZnt1 = plI* = llen = plI* + k(1 = K)|l20 — Sz0||* < Mo, (5)

Now we divide two cases to prove that {x,} converges strongly to p.
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Case 1. Assume that the sequence {llzn — pl|} is a monotonically decreasing
sequence. Then {|lz, — p||} is convergent. Clearly, we have

lznt1 = 2lI* = llzn — plI* — 0,
this together with (i) and (5) imply that
|zn — Sz,|| — 0. (6)

Since S is demi-closed (by Lemma 2.2), then it is easy to prove that {z,} con-
verges weakly to a fixed point p of S and T.
Next, we prove that {z,} strongly converges to p. Indeed, from (4), we get

| | Zrn+1 — p”2 < (1 —an)lyn — p”2 — 20, (p, Tn+1 —p)
= (1= an)l(1 = k)(2n — p) + k(Szr — p)||* — 20 (p, Tnt1 — P)
< (1 - an)llzna —p||2 — 200 (p, Tn+1 — D).

(7)
It is clear that lim,,_; (P, Zn+1 — p) = 0. Hence, applying Lemma 2.3 to (7), we
immediately deduce that xz, — p.

Case 2. Assume that {||z, —p||} is not a monotonically decreasing sequence.
Set T'y, = ||z, — p||?> and let 7 : N — N be a mapping for all n > ng (for some
ng large enough) by

T(n) =max{k € N : k <n,Ty <Tgy1}.
Clearly, T is a non-decreasing sequence such that 7(n) — oo as n — oo and
I'r(n) £ Trny41 for n > ng. From (5), it is easy to see that
Mo (n)
k(1 —k)
By the similar argument as that in Case 1, we conclude immediately that z,(,)

weakly converges to p as 7(n) — o0o. At the same time, we note that, for all
n Z no, )

”xv‘(n) - Sx*r(n) ”2 < — 0.

0< ”mr(n)+1 —pl|2 - ”xf(n) - pl|2 < Qr(n) [2<p - wT(n)-i-l’p) - ”x‘r(n) - p||2]a
which implies that
”x‘r(n) —p”2 < 2<p - xT(Tl)+lap>'
Hence, we deduce that lim, o ||Z7(n) — p|| = 0. Therefore,
i oy = lim Troysr =0

Furthermore, for n > ny, it is easily observed that I'y, < I'7(p)41 if n # 7(n)
(that is, 7(n) < n), because I'; > T'; 41 for 7(n) + 1 < j < n. As a consequence,
we obtain for all n > no,

0<T, < max{rr(n)) F7-(n)+1} =I'7(n)+1-

Hence lim, .o 'y, =0, this is, {z,} converges strongly to p. This completes the
proof. : , O
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Remark 3.1 It is well-known that the Picard iteration has only weak conver-
gence. However, our algorithm 'which is similar to the Picard iteration has strong
convergence.

From the proof of Theorem 3.1, it is easy to prove the following corollary.

Corollai‘y 3.1 Let H be a real Hilbert space. LetT : H — H be a non-expansive
mapping with F(T) # 0. Let {an} be a real numbers in (0,1). Let k € (0,1) be
a constant. For given xzo € H, let the sequencé {x,} be generated iteratively by

Zni1 = (1 — an)[(1 = k)zp + kTzp], n>0.

Assume that the following control conditions hold:

(i) limp—oo o = 0;
(ii) Z;L.ozo Qpn = 0.

Then {x,} converges strongly to a fized point of T.
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