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ERROR ESTIMATES FOR FULLY DISCRETE
DISCONTINUOUS GALERKIN METHOD
FOR NONLINEAR PARABOLIC EQUATIONS
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ABSTRACT. In this paper, we develop discontinuous Galerkin methods with penalty
terms, namaly symmetric interior penalty Galerkin methods to solve nonlinear
parabolic equations. By introducing an appropriate projection of u onto finite ele-
ment spaces, we prove the optimal convergence of the fully discrete discontinuous
Galerkin approximations in £2(L?) normed space.
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1. Introduction

Discontinuous Galerkin methods using interior penalties for elliptic and par-
abolic equations were introduced by several authors in [1], [2] and [10]. These
approaches generalized the method developed by Nitsche [3] for treating Dirich-
let boundary condition by the introduction of penalty terms on the boundary of
the domain. These methods referred to as interior penalty Galerkin schemes are
not locally mass conservative.

A new type of elementwise conservative discontinuous Galerkin method for
diffusion problems was introduced and analyzed by Oden, Babuska, and Bau-
mann [4]. The primal discontinuous Galerkin methods consist of four types:
Oden-Babuska-Baumann DG method [4], symmetric interior penalty Galerkin
(SIPG) method [10], nonsymmetric interior penalty Galerkin (NIPG) method

[6, 9] and incomplete interior penalty Galerkin (ITPG) method. Compared to
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the classical Galerkin method the discontinuous Galerkin method is very well
suited for the adaptive control of error and can provide high orders of accuracy,
provided that the solution of the model problem is sufficiently smooth.

Riviere and Wheeler [8] introduced semidiscrete and fully discrete locally con-
servative discontinuous Galerkin formulations for nonlinear parabolic equations.
They derived a priori L>=(L?) and L?(H") error estimates for the semidiscrete
approximations and a priori £°(L?) and ¢?(H') ertor estimates for the fully dis-
crete approximations. They proved the semidiscrete approximations converges
optimally in h in L?(H!) normed spaces and the fully discrete approximations
converges optimally in & and At in L?(H') normed spaces. Riviére and Wheeler
[7] constructed semidiscrete discontinuous Galerkin approximations to the so-
lution of the transport problem with nonlinear reaction, and proved that the
approximations converge optimally in h and suboptimally in 7 in H! normed
space and suboptimally in L? normed space. And Ohm, Lee, and Shin [5] con-
structed a semidiscrete locally conservative discontinuous Galerkin formulation
for nonlinear parabolic equations and obtained an optimal error estimate in
L>®(L?) norm, which improved the result of [8].

The objectives of this paper are to introduce the fully discrete discontinuous
Galerkin approximations for nonlinear parabohc equations and to prove that
they converge optimally in both spatial and temporal directions in £*°(L?) and
¢*(H') normed spaces.

The model problem and some assumptions are introduced in section 2. In
section 3 we introduce several definitions and construct finite element spaces
on which we suggest approximation properties. We introduce an appropriate
projection onto finite element space and analyze its convergence. In section 4 we
formulate the fully discrete discontinuous Galerkin approximations and prove its
optimal convergence in £~ (L?) and ¢2(H') normed spaces.

2. Model problem
Consider the following nonlinear parabolic partial differential equation
— V- (a(z,u)Vu) = f(z,u), (z,t) € 2 x (0,7, (2.1)
with the boundary condition
a{z,u)Vu-n =0, (z,t) € 002 x (0,71, (2.2)
and the initial condition
u(z, 0) = (), x €€}, (2.3)

where Q is a bounded convex domain in R%, d = 2 and n is a unit outward
normal vector to O€1.
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Assume that the followings are satisfied:
1. There exist constants v and v* such that

0 <y <alz,p) <v* for (z,p) e A x R

and
2

;—an(:b,p) <" for (z,p) € 2 xR.

0
Ia_pa(x$p) 3

2. f is uniformly Lipschitz continuous with respect to their second variable.
3. The model problem has a unique solution satisfying the following regularity
conditions:

u € W ([O,T];HS(Q)) for s > 2 and Vu € LOO(Q x [0,T7).

3. Definitions and discontinuous Galerkin _method

Let &, = {E1,E2,---,EnN,} be a subdivision of Q where E; is a triangle
or a quadrilateral if d = 2 and E; is a 3-simplex or 3-rectangle if d = 3. Let
h; = diam(E;) and h = max{h; : j =1,2,---, Ny }. We denote the edges of the
elements by {61,62, Cet Py EPu 41t ,th}, where e, C Q2,1 < k < Py, and

er CON, Po+1< k< M. For each edge er, P, +1 < k < Mp, we take ny the
unit outward normal vector to 0€2. And ife, =0E; NOE;,i<jfor1 <k <P,
then we take n; the unit outward normal vector to E;.

For an s > 0 we let

H5(Ep) = {v € LX(Q)| v|g, € H*(E;),j = 1,2, -,Nh}.

We now define the average and the jump for ¢ € H%(Ep),s > 3. For e =
0E; N O0Ej,i < j, for 1 < k < Pp, we set

(9} = 36lEles + 50l8)leer 18] = (@lm)les — (@15

The L? inner product is denoted by (-, -) and the usual Sobolev norm on E C R¢
is denoted by || - ||n. for a postive integer m. Simply denote || - [|lm.c by || * |Im
and || - |lo.o by || - ||- We define the following broken norms:

Nh N,l

1612, =S N0l2, ;s Uol> =3 (10113 5, + BI85 1, ) +J° (. )
J=1

J=1
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Py

where J?(¢, %) = Z |€ik| / [¢][¢]ds denotes the»vinteri(')r'pe‘nalty term. Here,

k=1
lex| denotes the length of e;, and o is a nonnegative real number.
Let r be a positive integer. The finite element space is taken to be

Np
D.(&) = ] Pr(E)
j=1

where P,.(E;) denotes the set of all polynomials of total degree less than or equal

to r on Ej.

The following lemma is given in [5, 8]. Notice that throughout this paper C

denotes a generic positive constant.

Lemma 3.1. Let u € H*(QQ) for s > 2 and let v > 2. Let a be a piecewise
positive constant defined on Q). Then there is 4 € D,(Ey), interpolant of u, such

that
/ {aV(i —u) -nk}ds=0 Vk=1,---, Py,
ex

4 = ulloo,5; < C—=llulls,5;,

,rs—l

: et
V(@ = ullo.g; < C o llulls, B,

A e
V(@ — u)]lo.B; < C oz [wlls, 2
“ﬁ’ - u"0,Ej < Crs—l ”u”S,Ej’

where p = min(r + 1, s). Moreover for e, = OE; N OE;

IVi]loo.er < CllVlloo,EiuE,

The weak formulation of the model problem (2.1)-(2.3) is defined by

Np, Py ,
(ug, v) + Z/ a(u)Vu - Vudz — Z {a(u)Vu - ny}v]ds
j=1"Fi k=1"¢ex
Ph
- Z {a(w)Vv - ni}ulds + J7(u,v)
k=1Y €k

= (f(u),v), v e H?(E), t >0,

(3.1)

(3.2)

(3.3)

(3.4)

(3.5)

(3.6)

(3.7)
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and ' :
u(z,0) = ¢(z). (3.8)
We define a bilinear function B(p;-,-) on H?(Ep) x H%(Ey) such that

Ny
B(p:v,w) = Z/ a(p)Vv - Vwdz
j=1 Ej

Py
- Z {a(p)Vv - ny }w]ds (3.9)

k=1" ¢k
Pn 5
=3 [ {alp)Vw- ni}lvlds + J7 (v, w).

k=1Y €k

For a A > 0, we define the following function By on H?(€) x H?(Ep)
Byx(p: v,w) = B(p : v,w) + A(v,w). (3.10)

Now we state the following lemmas whose proofs are given in [5]. |
Lemma 3.2. There exists a positive constant C independent on h such that

Ba(p:v,w)| < Clloll flwll, Vv, w € H*(E).

Lemma 3.3. For a sufficiently large o there exists a positive constant ¢ inde-
pendent on h such that

Ba(p:v,) 2 A0l Vo € Di(En)

Now we let H = {¢p € H!|V¢-n=0 on 89}

Lemma 3.4. Let t € [0,T] be fized and suppose that ¢ € H?(E}) satisfies
By(u: ¢,v) = F(v), Yv € D,(E),

where F : H*(€,) — R is a linear function. Let My and My be constants for
which
|F(w)] < Myflwll, Vw e H?*(Ex)

and -
|F(¥)| < Ma||[¥l|2,0, V¥ € HNH

hold. Then we have the following estimation

191l < CQU@l + Ma)h + M.
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Theorem 3.1. There exists a unique @ € D,(Ep) satisfying
Byx(u:u—1,v) =0, Yve€ D.(E)

together with the following approximation properties:

_ _ h*
lu =l + hllu —all < €= luls,

_ . h*
e =il + Rllue = el < C == (Ilulls + luclls ).
hH
v (Jlulls + luells + flwaels)

I
oz (lulls + tuells + fluells + el )

llweer — attt“ + hf|ug

where s > 2 and p = min(r + 1, s).

Proof. By Lemma 3.2 and Lemma. 3.3, the unique existence of 4 follows. The
proofs of the first two inequalities are given in [5] and the proofs of the last two
inequalities can be proved by the similar way from that used in [5]. O

4. Error estimates for fully discrete approximations

For a positive integer N we let At=T/N,t; = jAL, gj = g(x,t;),0 <5 < <N,

146 1-46 1+46 1-
and tjp = 5 tivi+ =5t 956 = 5 gi1t 59 0 <j < N -1 where

2
1/2

6 € [0,1]. Define |igllpezz) = max llg;l, lgllezy = | 3 llgslT | and
1/2

Nglle2qny = i lgs.0ll?

The fully discrete discontinuous Galerkin approximation {Uj}é'v:() is a se-
quence in D,(€}) that satisfies

/ —U;J“—_Z&vdx-{—/'a(Ujﬁ)VUj,g-Vvdx
o At Q

P, ,
— Z {a(U;,0)VUjg - ni }v]ds
k=1" €k (4.1)

—Z {a(U;.0)Vv - ni}[Ujlds + J7(Uj.0,v)

=1YE€k

= ( (Uj,9>,”U), Yv € Dr(eh)
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and

Ug = Ppy

where Py is an appropriate projection of ¢ onto D,.(€) satisfying the following
approximation property:

~ hH )
100 —u(0)|| < C—=1¥lls, p#=min(r+1,s). (4.2)

rs——2

Notice that (4.1) corresponds to Crank-Nicolson DGM when 8 = 0 and that
(4.1) corresponds to backward Euler DGM when 6 = 1. And notice that the
fully discrete discontinuous Galerkin approximations {U ', satisfying (4.1)
and (4.2) are well defined if At is sufficiently small.

Theorem 4.1. Letn =u—u and { =u—U. Then there exist constants C > 0
and B > 0 independent on h and At satisfying the following statements:
(i) If @ € (0,1] and u is sufficiently smooth such that u € L>*(H?®), u; €
L>*(H?) and uy € L°(H*) then
1CH e 22y + BALICNZ g1

h2
<c{ 555 (112 + el ey + el oo rey) + (AD2[fee[Fom 1) }

(ii) if 6 = 0, and u is sufficiently smooth such that u € L (H?®), us € L®°(H?),
and ugyy € L°(H®), then

1€ 11 2y + BALICNZ2p

2
< O g 12 + Bl + i) + (B8 il

Proof. Since ( =u — U, we obtain from (4.1) that fort =¢;4,0 <j < N — 1

<CJ+1At CJ,’U) + (ue(ts,0),v) — (ﬂ]%;uj,v)

+ B(uj : uj0,v) — B(Uj g : Ujg,v) (4.3)
= (f(ujvg) — f(Uj,g),’U), Yv € Dr(gh).‘
Hence - ~
(CJ+1At C] ) + (U/t(tj.()), ’U) _ (Uj-HAt_ Uy , ’U)
' (4.4)

+ B(ujg : ujg,v) + B(Ujg : (o,v) — B(Ujo : Ujg,v)
= (f(uj.g) — f(Uj.g).v).
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Putting v = (j ¢ in (4.4), we obtain
(CJH S, , G, e) + Bx(Uj0 : Gj.0:G5.0)

= {—(ut(tj,O)aCj,G) + (E]-H—_aC] o)] + [B(Uj : Uj.6,Cj,0)

—B(uj. : uj0,C0)] + [(f(uje) — F(Uje), (o) + ACjes o)l
=L+ 1 + I3.
Noticé that

(CJ_HAt CJ’Cj,G)

1 1 p 1 )

T At (CJ“ Ci» '2‘(1 +0)Ci+1 + 5(1 - )Cj)
1 —

= o7 [+ Ol l” = A= OlIGI* - 26(5, ng)]

1 -
57 |+ OG- l1? = (1= OGI2 = 011G 12 = 611G 1]

1 -
= o 16412 = 11

v

and
| Bx(Ujg : G0, Giro) = CllGs0ll®.
Thus we have

1
o 16+ = IGI2] +@lGioll® < I+ o + .

Now we estimate the bounds for I;, I and I3. Using the Taylor’s expansions of
uj+1 and u; about t = t; ¢, we obatin

(-2
(5 i (3 ]

for some t*,t** € (t;,t;41). Therefore we get

Uj+1 — Uj
At

- 1
= U(tj) + 5

5 (A)ua(t;.0)

I = (%_HA}__U_J Gj. 9> — (ui(t;.0),Cjo)

= (Us(tj.0) — ue(tio), (o) + At(pj.e,Cio)
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2 2
o355~ (52
. [(I—'Qﬁ) (At (t) + (1“;9) (At)am(t**)}-

Since n; = us — u¢, we have

11| < IneCts0)Goll+ AtllpsallIGiol
< C(lmilt5,0) 12 + 165012 + (A0 lps0ll?)-

where

Notice that _
I = B(Uj g : Uj,9,Cj0) — Bluj : uj0,G6)

= B(Uj ¢ : Uj0,(j0) — Bluje : Uje,(jo)-

Therefore

|I2| = |B(Uj g : Ujg,C0) — Bluje: Uja, o)l

Np,
<D /E (a(Uje) — a(u;,6))Vize - V(e
j=1 J

Py

+1Y [ {@Us) — alu;,0)) Vitj6 - n} G 0]

k16k

+ Z {(a(Uj0) — a(u;,6)) V5,0 - e}, 6]

k=1" €k
= Iog + Ioo + Ios.

Using the trace theorem, the inverse estimate, and the boundedness of || V|, E;
and ||Valleo.e,, We obtam the following estimates for Io;, I>2 and Ip3:

Ny
<Y [ 1(a0) - alus0) Vo Vsl
j:l 3 .
Np
<O (Imsollos; + IGiollo.5; ) 19 Cs0l0,5, 1V 0l1.5,
j=1 |

Np
<CY (ol 5, + 160l £,) + e1llGoll?,
J=1 '
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Py,

Iy <Y [Insollo + G0l IV ollc e [[Grolloc
k=1

. g

P, \ 1/2
< C(J7 (G0, Gio))'? (Z 1e—k"-(||77ja9||3,e,c + ||Cjﬁ”3,ek)>
k=1

1/2
Np
< Ol (}: B (15 19501 £, + R V5011 5, + h;lucj,ené,Ej})
j=1

Ny

<ellGall? +C ) (Ilm,ellﬁ,gj + h3IVn;6ll5 5, + ||Cj,9||(2>,Ej) :
i=1
and
Ph
Is <Y NIV 0llooer (IMssllo.er + 1¢5.00l0.0x) Ims.lllo.ex
k=1

Np,
<Y h VG ello,gs (Insello.s; + Rl Vajslle.s, + ICello.s)
i=1

+ (Imjello,5; + RjlVnjllo,5;)
Ny,

<Y 1VGsllo,5; (Ims6llo,z; + Rl Vnjello.&; + IS.6ll0.5,) llull2
j=1

Ny
< esliGiall®+ > (Imsolly z, + B3IVl 2, + 165013 5, )
Jj=r

for sufficiently small €1 > 0, 2 > 0, and €3 > 0. Therefore we obtain
Np
1) < (61 + 2+ el + O (Imsol e, + W2IVnsold e, + 1ol ) -
Jj=1
And
[I3] < C [(Ingoll + 1i.0lDNS5.01l + 1€G.0117] < Clinsoll + 11¢5.0012)

Using the bounds for Iy, I» and I3, we have

o Gl = 1G] + Cligall

< eliGiall? +C [Imsal® + 1630l + lme(ts. o)l + (A02 gl + B3| Vsl
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which implies the following

G541l = 16511 + @t ol
< CAt[mz0ll® + 1650012 + H2IVnz0l2 + Imelts0) 2] + C(AH 501

Since 7.9 = -—(1 +0)njt1 + (1 — 6)n;, we have

2

IGG+1l® = 1617 + adtliGoll?
< CAt [lIng+all* + Il + 1) 411 + 1) 17 + 16517 (4.4)
HI¢G+1lI? + B2 Vnzaall® + B2 |[Vis11%] + C(AL | pjol*.

Summing the both sides of (4.4) from j7 = 0 to N — 1, we have
| N-1
vl +aAt Y 1l
j=0

N
< NiGoll® +CAt Y [lmsll? + )12 + B2V 11 + 11¢1°]

j=0
N-1

+C(AL® > [lpsall®
7=0

By applying the Gronwall’s Lemma, we have for a sufficiently small At,

N-1
ICN1I% + BAE D IS 0l
§=0
N-1
< OlGoli? +C(an® > ol (4.5)
5=0 ~

N
+C(A) Y [l@e); 117 + Imsll* + R2([ V5.
j=0

Applying (4.2) to (4.5), we obtain

N-1 N—1

ol + B8 S 160l < Ot 12 + C(A S iy

§j=0 =0

+cmz[ 57 (usll2 e, + N, llwﬂ .

j=0
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Recalling the following definition of p; ¢ for 6 € (0, 1],
1|16\ [(1+6)°
Pre =51\ 2 2
1 1-0\°_ 1+6\°_ ..
+ gAt [(T) Uttt(t )+ (—2—) uttt(t ):|

lpj.6ll < CO)sell oot ty4a:22) for 6 € (0,1].
Hence, for 6 € (0, 1]

1€ 1170 12y + BALNIC "|?2<n| I

)

we have

2u 2;1,

hsH
<C- 2)1|¢u2+cmz iy s 2 + s 1)

N—1

+ C(At)? Z |Iutt"%°°(tj’tj+1;Hs)
=0

hzﬂ h2u
<c{ V13 + sy (1l e ey + luellF e arey)

+ (A0l
And for 8 = 0 we obtain

lpj0ll < CA|[Westl| Loo(t;,t541509)

and therefore

111750 (22 + BALCNZ -y

h2u 2u

2 N h
< Oyt W12 + O Y s (sl + w5 2)
7=0

=

-1

C(At)5 “uttt“%m(tj i1 H®)
J

h?
<c{ oy U2  [ll3 e ey + [l 1)) + (A1) nutttnmws}

I\
o

which completes the proof. | v U

Finally by combining the results of Theorem 3.1 and Theorem 4.1, we have
the following optimal L? error estimations for the fully discrete discontinuous
Galerkin approximations.
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Theorem 4.2. (i) For 6 € (0, 1], assume that w € L>®(H?®), u, € L>*°(H?®) and
uge € L°(H?). Then we obtain

U = wllfoo(z2) + BN = ullZepp)

h2
< O{ 2(s—2) (IWHZ -+ ”u”Loo(Hs) + ”Ut“Loo(Hs)) + (Af) ”Utt”Loows }

where 2 < p < min(r + 1, s).

(ii) For 6 = 0, assume that u € L>®(H?®), u; € L>*(H?®) and gy € L>*(H?).

Then, we obtain

U = ullfos £2) + R2NU — w22

h2
< C{ 5(5=3) (N3 + el oo (rrey + NuellF oo (arey) + (At)2||uttt!|%m(ﬂs)}

where 2 < p < min(r + 1, s).

10.
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