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WEAK INEQUALITIES WITH CONTROL FUNCTIONS AND
FIXED POINT RESULTS

BINAYAK S. CHOUDHURY

ABSTRACT. Inrecenttimes control functionshave been used in several prob-
lems of metric fixed point theory. Also weak inequalities have been consid-
ered in a number of works on fixed points in metric spaces: Here we have
incorporated a control function in certain weak inequalities. . We have es-
tablished two fixed point theorems for mapping satisfying such inequalities.
Our results are supported by examples.
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1. Introduction

The Banach contraction mapping principle is widely recognized as the source
of metric fixed point theory. A mapping T : X — X where (X,d) is a metric
space is said to be a contraction mapping if for all z,y € X,

d(Tz,Ty) < kd(z,vy), where 0 < k < 1. (1.1)

According to the contraction mapping principle, any mapping T satisfying (1.1)
in a complete metric space will have a unique fixed point. This principle has been
generalised in different directions by mathematicians over the years. Also in the
contemporary research it remains a heavily investigated branch. The works noted
in [1], [2], [4], [10], [14] and [16] [19] are some examples from this line of research.

In particular, in [1] Alber and Guerre-Delabriere introduced the concept of
weak contraction in Hilbert spaces. Rhoades [18] has shown that the result
which Alber et al. had proved in [1] is also valid in complete metric spaces. We
state the result of Rhoades in the following:
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Definition 1.1 (weakly contractive mapping). A mapping T : X — X where
(X, d) is a metric space is said to be weakly contractive if

d(Tz,Ty) < d(z,y) — é(d(z,y)), ‘ (1.2)

where z,y € X and ¢ : [0,00) — [0,00) is a continuous and nondecreasing
function such that ¢(¢) = 0 if and only if ¢t = 0.
If we takes ¢(t) = kt where 0 < k < 1 then (1.2) reduces to (1.1).

Theorem 1.1 [18]. If T : X — X is a weakly contractive mapping where (X,d)
is a complete metric space, then T has a unique fized point.

Weak inequalities of the above type have been used to establish fixed point
results in a number of subsequent works some of which are noted in [5], [6], [13],
[21] and [22].

There is another important generalization of the Banach contraction principle
given by Khan et al. where they used a control function (which they called
altering distance function).

Definition 1.2 (altering distance function)[15]. A function® : [0,00) — [0, c0)
is called an altering distance function if the following properties are satisfied:

(i) ¢ is monotone increasing and continuous
(ii) ¥(¢) =0 if and only if ¢=0.

The following generalisation of the Banach contraction principle was proved
by them.

Theorem 1.2 [15]. Let (X,d) be a complete metric space, ¢ be an altering
distance function, and f : X — X be a self mapping which satisfies the following
inequality:

Y(d(fz, fy)) < cy(d(z,y)) (1.3)
for all z,y € X and for some 0 < ¢ < 1, then f has a unique fixed point.

In fact Khan et al. proved a more general theorem [15, theorem 2] of which
the above result is a corollary. Altering distance has been used in metric fixed
point theory in a number of papers. Some of the works utilizing the concept of
altering distance function are noted in [17], [19] and [20]. In [7] 2-variable, in
[8] 3-variable and in [3] 4-variable generalizations of altering distance function
have been introduced and have been applied to fixed point problems. It has also
been extended to the case of multivalued and fuzzy mappings [9]. The concept
of altering distance function has also been extended to fixed point problems in
Menger spaces ([10], [11]).

The purpose of this paper is to work out fixed point results for mappings in
metric spaces by use of weak inequalities and altering distance function. We have
two theorems both of which are supported by examples. The difference between
the contents of the two theorems is envisaged by the observation that the second

theorem does not apply to the example associated with the first theorem.
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2. Main result

Theorem 2.1 Let (X,d) be a complete metric space, and T : X — X be a self
mapping which satisfies the following inequality:

U(d(Tz,Ty)) < ¥(M(z,y)) - 2(N(z,y)) (2.1)
for all x,y € X, where

M(z,y) = max{d(z, ), 5 (d(z, Tz) + d(y, Ty)), 3 (d(w, T2) + d(z, Ty))}, (22

N(z,) = min{d(z, ), 5 (d(y, T2) + d(z, Ty)}, (23)
d : [0,00) — [0,00) is a lower semi continuous function with ®(t) > 0 for
all t € (0,00) and ®(0) = 0 and ¥ : [0,00) — [0,00) is an altering distance
function (definition 1.2). Further let for x € X, there exist N = N(x) such that
d(T™z, T"2z) > 2d(T" 1z, T™2x) for all n > N. Then there is a unique fized
point of T.

Proof. Let z¢ € X, we define a sequence {z,} in X, such that for all n > 0,

Tny1 = Txyp. (2.4)
If x, = z,41, then x,, is a fixed point of T. Hence we assume for all n > 0,
Tp F Tntl (2.5)
Putting * = z,, and y = z,41 in (2.1), we have
U(d(zn+1, Tnt2)) < U(M (20, Tni1)) — PN (zn, Tni1))- (2~6)
Now
M (@0, Tns1) = max{d(@n, Ts1), 5 (A Tns1) + d(nst, Ts2)),
S, Tust) +dlon Tas)} (2.7)
and
N(zp, Zrn41) = min{d(zn, Tni1), ‘%(d($n+1, ZTn+1) + d(Tn, Tni2))}, (2.8)

If possible, let for some n, d(zn, Zn4+1) < d(Tp+1,Tn42). By the triangular in-
equality

0< d($n+17$n+2) - d(xm xn—i—l) < d(xn’ $n+2)
Hence N(zn,Zn+1) > 0. Then from (2.6), (2.7) and (2.8) we have by the property
of ®-function

U(d(Znt1, Tnt2)) < W(d(@nt1, Tnr2)) — ®N(Tn, Tn1)) < U(d(Tns1, Tnt2))-
which is a contradiction. Hence for all n > 0,

d(Tn+1, Tni2) < d(Tn, Tni1) (2.9)
In view of (2.9) we obtain from (2.7) and (2.8), for all n > 0,
M(zp, Tni1) = d(xn, Trir)- : (2.10)
1
N(zn,Tnt1) = 5 (d(@n, Tn+2)) - - (2.11)

2
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Putting (2.10) and (2.11) in (2.6), we have for all n > 0,

U(d(@ni1, Tnr2)) < U(d(@n, Tnt1)) = (5 (d(@n, Tns2)))- (2.12)
Again (2.9) implies that the sequence {d(zn,zn+1)} is a monotone decreasing
sequence of non-negative real numbers. Hence there exists r > 0 such that

lim d(zn, Tpy1) =T

n—o0

By the conditions of the theorem this implies that there exists N such that for

all n > N, |d(zn, Tni2) — 21| < |d(Zn, Tns1) — 7| + |d(@ne1, Tnye) — 7] — 0

as n — o0o. Thus lim d(z,,Tns+2) = 2r. Making n — oo in (2.12), by the
n—oe

continuity W-function and the lower semi continuity of ® -function, we have

¥(r) < U(r)—®(3r), which by the property of W-function and $-function implies
that r = 0. Hence we have,

lim d(zp, zp+1) = 0. (2.13)

n—-»
And also,girrécd(a:n, Tpyz) = 0.
Next we show that {z,} is a Cauchy sequence. If otherwise, there exists € > 0

and sequences of natural numbers {m(k)] and {n(k)} such that for every natural
number k

n(k) > m(k) > k (2.14)
and
A(Tm(k)> Tn(k)) = € (2.15)
Corresponding to m(k) we can choose n(k) to be the smallest integer such that
(2.15) is satisfied, and we have

AT k), Tn(k)-1) < €. (2.16)

further (15) implies d(TZm(k)-1, TTn(k)—1) # 0. Hence Tpk)—1 # Tn(r)-1-
Putting = = Zyk)-1 and y = Tpp)—1 in (2.1), (2.2) and (2.3) we have for
all k,
U(d(TTmk)-1, TTn(k)~1)) = Y(A(Zm(k)> Tn(k)))
S U(M(Tm(k)—1> Tn(k)—1)) — PN (Tm(k)-1, Tn(k)—1)) (2.17)

where

1
M(Zm(k)—1, Tnk)—1) = Max{d(Tm(k)—1, Tn(k)—1); §(d(wm<k>_1, Tm(k))

1 e
+d(Tn(k)—15 Tn(k))), §(d($n(k)-1, Tmk)) + AZmk) -1, Tn(r)))} (2.18)
and , :
N(Tm(k)=1, Tn(k)—1) = min{d(Tmr)-1, Tnk)-1)s
1
'i(d(:tn{k)—l, :Em(k)) + d(:vm(k)~—1s mn(k)))} (219)

Then for every positive integer k we have,
£ S d(Tmr), Tnk)) < ATmk)s Tnk)—1) + AT hxn(k)) < e+d(Tnk)-1, Tn(k))-
[by (2.16)]
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Making £ — oo in the above inequality we obtain by (2.13),
klingod(xm(k), .'En(k)) = €. (2.20)

Again for all k,

AZTm(k)—1s Tn(k)=1) < ATm(k)—1s Tm(k)) + ATm(k)> Tnk)) + ATn(k) Tnk)—1)
and d(Zu(x), Tr(r)) < AZm)r Tmry—1) + AT mr)—1, Tr(k)—1) + d(Tr(r)—1, Tri(k))
Making kK — oo and using (2.13) and (2.20) in the above two inequalities we
obtain |

Hm d(Z (k) —15 Tnry-1) = € (2.21)
Again for all k,
A(Tm(k)—15 Tn(k)) < ATmk)=1> Tm(k)) + ATmk)s Tn(k))
and d(Tm(k), Tn(k)) < ATmk), Tmk)—1) + ATmk)—15 Tn(k))-
Making k — oo and using (2.13) and (2.20) in the above inequalities we have
lim d(Tm k)1, Tn(k)) = €. C(2.22)
k—00 : : .

Also for all k, d(xn(k)_l, :L‘m(k)) < d(xn(k)_l, -'En(k)) + d(xn(k), :Em(k)) and .
ATn k) Tmk)) < ATnk)s Tnik)—1) + ATnk)—15 Tm(k))
Making k — oo in the above inequalities we have using (2.13) and (2.20)
kllngod(wn(k)——l, Tm(k)) = €- (2.23)
Making k — oo in (2.17) and using (2.13), (2.18)- (2.23) we have by continuity
of ¥-function and lower semi continuity of ®-function, ¥(e) < ¥(e) — P(¢).
Then we have by the virtue of the property of ¥-function and ® -function it is
a contradiction with € > 0. Hence {z,} is a Cauchy sequence and therefore {z,}
is convergent in the complete metric space X.
Let
Tp — 288N — 00. (2.24)
By (2.5), there exists a subsequence {yx} of {z,} such that z # y; for all k.
Substituting * = y, and y = z in (2.1), (2.2) and (2.3) we obtain

W( Ay, T2)) < WM (yr, 2)) — (N (3, 2) (2.25)

where
My, 2) = max{d(ye, 2), 5 Ay, is1) + d(z, T2)), 5 (s, T2) + e,y )
(2.26)

N(yk, z) = min{d(yx, z), 5 (d(yx, Tz) + d(z, yx+1)) }.(2.27) Making k — oo in the
above inequalities, we obtain ¥(d(z,Tz)) < ¥(5(d(z,Tz))), which implies that
d(z,Tz) = 0, that is, z = Tz. Hence z is a fixed point of T. We next establish
that the fixed point is unique. Let z; and z9 be two fixed points of T and z1 # z»,
then putting z = z; and y = 22 in (2.1), (2.2) and (2.3) we obtain

U(d(21,22)) < ¥(d(z1, 22)) — ®(d(21, 22))

which by the virtue of the property of ¥-function and ® functions implies d(z, z»)
= 0. That is z; = zy. This completes the proof of the theorem. O
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Example 2.2. Let S =[0,1]U{2,3,4,....} and
lz—yl, ifxye€[0,1],z#y .
d(z,y) =< z + v, if at least one of x ory ¢ [0;1], and = # v,
0, if z=uy.
Then (X,d) is a complete metric space.[4]
Let T : X — X be defined as
z—3z?, if0<z<1,

Tz = -1, if z€{2,34,.}).
Let ¥ : [0,00) — [0, 00) be defined as
t, if 0<t<1,

w(t) = t2. if t> 1.

Let ®: [0,00) — [0, 00) be defined as

2 if 0<t<1,
q)(t)_{ %, if t>1.

Other conditions of theorem 2.1 except the inequality (2.1) are clearly satisfied.
Without loss of generality we assume that z > y and discuss the following cases.

Case-I: =z €]0,1],

W(d(T2,Ty)) = (2~ 20%) ~ (v~ 597) = (2~ 9) — 3z —¥")

<(x—y) - %(x—y)Q(Sincex+y >T—y
< \I’(M(xay)) - (I)(N(CL‘,y))

Case -II: z €{3,4,5,.....}
_ z—1+y— 307 ify=10,1]
Then, d(Tz, Ty) = { z—1+y—1, ify={2,3..}
Hence for all y, d(Tz,Ty) < x +y — 1 Again d(z,y) = = + y so, ¥(d(z,y)) =
(x + y)? Therefore,

U(d(Tz,Ty)) <V(z+y—1)=(@+y—1)
<@E+y+lE+y-1)=(+y)°-1<(z+y)° —%
:\Il(d(xay)) - (I)(N(.’E,y))

< ¥(M(z,y)) — ®(N(z,y)). (Sinced(z,y) < M(z,y))

Case - III: z =2 Theny €(0,1],d(Tz,Ty) =1—(y—3y*) <1 so that

VU(d(Tz,Ty)) < ¥(1) = 1. Again, d(z,y) = 2+ y, so that d(y,Tz) =1 -y
and d(z,Ty) =2+ (y — 39°)

N(z,y) = min{2+y, ;(1-y+2+ y—35°)} = § — 3° (for y € [0,1])
Therefore, ¥(M(x,y)) — ®(N(z,y)) > (2+y)* -3 >1=V(d(Tz, Ty)).

Considering all the above cases we conclude that the conditions of theorem
2.1 remain valid for. ®, ¥ and T defined as in the above. It may be observed that
z = 0 is the unique fixed point of 7.
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Theorem 2.3. Let (X,d) be a complete metric space, and T : X — X be such
that the following is satisfied for x,y € X with x # v,

¥(d(Tz, Ty)) < ¥(M(z,y)) — MQ(z,y)) (2.28)
where

M (2, ) = max{d(z, ), 3 (d(z, T2) + dl, Ty)), 5(d(y, To) + d(a, T)}, (2:29)

Q(z,y) = min{d(z,y), 3(d(z, Tz) + dy, Ty)), 5(d, Tz) + d(z, Ty)}, (230

where h : [0,00) — [0,00) is such that h(t) > 0 for all t > 0, h is discontinuous
at t =0 with h(0) = 0, and ¥ : [0,00) — [0,00) is an altering distance func-
tion. Further let for x € X, there exists N = N(z) such that d(T"z, T" ?z) >
2d(T™ 1z, T 2x) for alln > N. Then T has a unique fized point.

Proof. Starting with arbitrary z¢o € X, we construct the sequence {z,} as in
(2.4). Further we assume (2.5) for all n > 0, otherwise the fixed point of T
automatically exists. Putting z = z,, and y = z,41 in (2.28) for all n=0,1,2,3...
we obtain

V(d(@ns1,Tnr2)) < UM (Tn, Tn41) — MQ@n, zns1))  (231)
where '
M(en, Tns1) = max{d(zn Tnin), 5 (d@nss, ) + d(Enss, 2ns))
5 @m0, n11) + d(@n, 2042))) (2.32)
and Q(Zn, Tnt1) = min{d(Tn, Tnt1), 5(d(Tn, Tnt1) + d(Tnt1, Tni2)),
2 (@@ 11, Tn41) + d(zn, 70 12)]) (2.33)

If possible, let for some n, d(Zn,Zns1) < d(Tp41,Zns2). By the triangular
inequality0 < d(p+1, Tnt2) — d(Tn, Tni1) < d(zp, Tpy2). Hence N(zy, Tni1) >
0. Then from (2.31), (2.32) and (2.33) we have by the property of h-function

U(d(Tnt1, Tni2)) < U(d(Tnt1, Tnte))-

which is a contradiction. Hence for all n > 0,
A(Tnt1, Tnt2) < d(Tn, Tnit). (2.34)
In view of (2.34) we obtain, for all n > 0,
1
M(Zn, Tny1) = d($717$n+1)a Q(zn, Tny1) = i(d(xmxn+2))-

Using the above relations we have for all n > 0,
\I!(d(l'n,—#l,anLQ)) < \I’(d(fvm xn+1)) - h(d(.’L‘n, xn+2))~ (235)

Again (34) implies that the sequence {d(z,+1,%,)} is a monotone decreasing
sequence of non-negative real numbers. Hence there exists » > 0 such that
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lim d(x,41,2,) = 7. As already observed in the proof of theorem (2.1) we have

that lim d(zn, Tnio) = 2r.
T OO

Making n — oo in (2.35) and using the above relation, by continuity -
function and by h-function, we have ¥(r) < ¥(r) — h(r), which by the property
of U-function and h-function implies that r = 0. Hence we have

lim d(z, Tn41) = 0. (2.36)
n—o
Next we prove that {z,} is a Cauchy sequence. If otherwise, we can have some

¢ > 0 and corresponding sub sequences {Zmx)} and {Z,x)} of {z,} such that
for every natural number k n(k) > m(k) > k and '

(T (kys Tn(k)) = € (2.37)

Corresponding to m(k) we can choose n(k) to be the least integer such that (2.37)
is satisfied , so that we have

d(Tm(k), Tn(k)-1) < € (2.38)

From (2.37) d(T®m(k)~1, TTn(k)—1) # 0, hence Tpmx)—1 # Tnk)—1. Further pro-
ceeding identically way as in theorem (2.1), we have

k@;j@mm; Tn(k)) = € (2.39)
kllnc}od(xm(k)—l,wn(k)-l) =€ (2.40)
klirgod(xm(k)_l, Tn(k)) = € (2.41)
and ‘
;clingod(x"(k)—l’ Tm(k)) = €. (2.42)

Now putting & = Tpmk)—1 and ¥ = Zpk)—1 in (2.28), (2.29) and (2.30) we get,
V(AT (k) Tnr))) < C(M(@m)=1, Tnk)-1)) — HQ(Tm(k) -1, Tn(k)-1))- (2.43)

Now

1
M(Z (k) =15 Tn(k)—1) = MaX{d(Tm(k)—1, Tn(k)=1)5 §(d($m(k)~l’ T (k))
1
+d(Tn(k)=15 Tn(k))); "'Z“(d(wm(k)--la Tn(k)) + ATnk)—1, Tmk))) }- (2.44)

. 1
Q(Tm(k)—1s Tn(k)—1) = MIin{d(Tm(k)—1, Tn(k)~1) §(d($m(k)-1, Tom(k))-

1
+d(Tn (k)15 Tn(k))s 5 (A@mr) =15 Tn(r)) + AZn(k)-1, Tm(r))) }- (2.45)

Making k& — oo and using (2.36), (2.39), (2.40) and (2.41), we obtain from (2.43),
(2.44)and (2.45)
]{J_i’ﬂo?é]\v{(:ﬂm(;ﬁ)_l, xn(k)-—l) = €, (2.46)

LimQ(Tpm(r)—1, ZTn(ry-1) = 0. (2.47)
k—c
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Further making £ — oo in (43), and using (2.46), (2.47), by continuity of ¥

we obtain | |

W(e) < U(e) — Lz'm RQ(ZTm(k) =15 Ta(k)-1))- (2.48)
By (2.48) and the fact that h has a discontinuity at ¢t = 0 and h(t) > 0 for ¢t > 0,
we observe that the last term of the right hand side of the above inequality is
non zero. Hence we arrive at a contradiction. Hence {z,} is a Cauchy sequence
and therefore {z,} is convergent in the complete metric space X.

Let z, — z as n — oco. By (2.36), there exists a subsequences {y;} of {z,}
such that z # y;, for all k. Substituting z = y, and y = z in (2.28), (2.29) and
(2.30) we obtain W(d(yk+1,72)) < U(M(yk, z)) — h(Q(yk, 2)) where,

M (yk, z) = max{d(yx, 2), 5 (d(Yr, Yr+1) + d(2, T2)), 5(d(yk, T2) + d(z, yr+1))},
Q(yk’ Z) = min{d(yk’ Z), %(d(yk’ yk-{-l) + d(za TZ))? %(d(yka TZ) + d(za yk-l-l))}'
Making k — oo in the above inequalities, we obtain ¥(d(z, T'z)) < ¥(3(d(z, T2))),

which implies that d(z,Tz) = 0, that is, z = T'z. Hence z is a fixed point of T.

We next establish that the fixed point is unique. Let 2z; and 2o be two fixed
points of T' and z; # 22, then putting £ = 2; and y = 22 in (2.28), (2.29) and
(2.30) we obtain ¥(d(z1, 22)) < ¥(d(21, 22)) — h(d(z1, 22)) which by the virtue of
the property of U-function and h functions implies d(z1, z2) = O,that is z; = 2.
This completes the proof of the theorem.2.3.

Example 2.4. Let Y ={0,1,2,3,4,.....} and

1 if x,y € {0,1},z#y
d(z,y) = z+y, if at least oneof xory ¢ {0,1},x # y,
0, if z=uy.

Then Y being a closed subset of (S, d) of example (2.2) is a complete metric
space. In fact S is a closed subset of the space X in example 2.2 which is a
complement of (0,1) in X.

Let T : X — X be defined as

r—1, ifzx#0,

Tz = .

{ 0, if z=0.
Let, ¥ : [0,00) — [0,00) be defined as ¥(t) = #2, t € [0,00)
Let, h : [0,00) — [0, 00) be defined as

1 -
) R if t>0,
Alt) = { 0, if t=0.

Then Theorem 2.3 is applicable to this example.

Remark. The difference between the contents of the two theorems is envis-
aged by the observation that the second theorem does not apply to the example
associated with the first theorem.
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