NOETHERIAN RINGS OF KRULL DIMENSION 2*

YONG SU SHIN

ABSTRACT. We prove that a maximal ideal M of D[x] has two generators and is of the form $\langle p, q(x) \rangle$ where p is an irreducible element in a PID D having infinitely many nonassociate irreducible elements and q(x) is an irreducible non-constant polynomial in D[x]. Moreover, we find how minimal generators of maximal ideals of a polynomial ring D[x] over a DVR D consist of and how many generators those maximal ideals have.

AMS Mathematics Subject Classification: 13D40, 14M10 Key words and Phrases: Principal ideal domains, polynomial rings, power series rings, discrete valuation rings.

1. Introduction

Throughout this paper, we assume that a ring R is a commutative ring with unity 1, R[x] is a polynomial ring over a ring R, and R[[x]] is a power series ring over a ring R (see [1, 3] for more details and their further properties).

In [4], they found the necessary and sufficient condition that every maximal ideal M of a polynomial ring D[x] over a principal ideal domain D (PID for short) has height 2. By Krull's principal ideal theorem in [3], it is well known that if a prime ideal \wp of a Noetherian ring R which is minimal among the prime ideals containing a proper ideal (x_1, \ldots, x_n) in R has height $\leq n$. Hence every maximal ideal of a Noetherian ring of height 2 has at least two minimal generators. However, we don't know when a maximal ideal of height 2 has two generators in general.

In Section 2, we show that a maximal ideal M of D[x] has two generators and is of the form $\langle p, q(x) \rangle$ where p is an irreducible element in a PID D having infinitely many nonassociate irreducible elements and q(x) is an irreducible polynomial in D[x] (see Theorem 2.6).

Received January 18, 2010. Accepted March 27, 2010. *This paper was supported by a grant from Singshin Women's University in 2008.

 $^{\ \, \}textcircled{\odot}$ 2010 Korean SIGCAM and KSCAM .

In Section 3, we introduce a discrete valuation ring D (DVR for short) and show how minimal generators of maximal ideals of D[x] consist of and how many generators those maximal ideals have (see Theorem 3.10). Furthermore, we give complete descriptions of maximal ideals of a polynomial ring k[[x]][y] over a typical DVR k[[x]] when k is a field (see Corollary 3.11).

2. Maximal ideals of a polynomial ring over a PID

In this section, we shall investigate maximal ideals of a polynomial ring over a PID having infinitely many nonassociate irreducible elements. First of all, we introduce some well-known definitions and preliminary results.

Definition 2.1 ([1]). Let R be a commutative ring with unity 1. Then we denote the collection of all maximal ideals in R by

$$\Omega(R) = \{M \mid M \text{ is a maximal ideal of } R\},\$$

and the collection of all prime ideals in R by

$$\operatorname{Spec}(R) = \{ \wp \mid \wp \text{ is a prime ideal of } R \}.$$

The Jacobson radical ideal \sqrt{R} of a ring R is the intersection of all maximal ideals M in R. That is,

$$\sqrt{R} = \bigcap_{M \in \Omega(R)} M.$$

The nilradical $\sqrt{0}$ of R is the intersection of all prime ideals of R. In other words,

$$\sqrt{0} = \bigcap_{\wp \in \operatorname{Spec}(R)} \wp.$$

Definition 2.2 ([1, 3]). Let R be a commutative ring with unity 1. The *height* of a prime ideal \wp is the supremum of the lengths of all the chains

$$\wp_0 \subset \wp_1 \subset \cdots \subset \wp_t = \wp$$

of prime ideals of R that end at \wp .

The Krull dimension dim R is the supremum of the lengths of all the chains of primes ideals of \wp , or equivalently, the supremum of the heights of all the prime ideals \wp in R.

The following theorem was proved by F. Zanello in [4].

Theorem 2.3. Let D be a PID. Then the following statements are equivalent.

- (a) every maximal ideal of D[x] has height 2.
- (b) D has infinitely many pairwise nonassociate irreducible elements.

Definition 2.4 ([2]). Let D be a commutative ring with unity 1. D is Noetherian if D satisfies the ascending chain condition on ideals, i.e., if for every chain of ideals $I_1 \subset I_2 \subset I_3 \subset \cdots$ of D, there is an integer n such that $I_j = I_n$ for all $j \geq n$.

Let D be a commutative ring with unity 1 and let D[[x]] be the ring of formal power series over the ring D. Its elements are called power series. The power series in D[[x]] is denoted by the formal sum $\sum_{i=0}^{\infty} a_i x^i$ and the elements a_i are called coefficients and a_0 is called the constant term.

Remark 2.5 ([2]). Recall that

- (a) a commutative ring D with unity 1 is Noetherian if and only if every ideal of D is finitely generated.
- (b) If D is a commutative Noetherian ring with unity 1, then both the formal power series ring D[[x]] and the n variable polynomial $D[x_1, \ldots, x_n]$ over the ring D are also Noetherian. Moreover,

$$\dim D[x_1,\ldots,x_n]=\dim D[[x_1,\ldots,x_n]]=\dim D+n.$$

Now we prove the main theorem in this section.

Theorem 2.6. Let D be a PID having infinitely many nonassociate irreducibles and D[x] be a polynomial ring over D. Then every maximal ideal of D[x] is not principal and of the form $\langle p, q(x) \rangle$ where p is an irreducible of D and q(x) is an irreducible polynomial in D[x] of a positive degree. Conversely, if p is an irreducible of D and q(x) is an irreducible polynomial in D[x] of a positive degree, then every ideal of the form $\langle p, q(x) \rangle$ in D[x] is maximal.

Proof. Since D is a PID having infinitely many irreducibles, every maximal ideal M of D[x] has height 2 by Theorem 2.3. Hence M cannot be generated by a single element in M.

Since D is a PID (i.e., Noetherian), D[x] is also a Notherian ring by Remark 2.5 (b). By Remark 2.5 (a), every maximal ideal M is generated by a finite number of irreducible polynomials, $p_1(x), \ldots, p_s(x)$ in D[x] with $s \geq 2$, i.e., $M = \langle p_1(x), \ldots, p_s(x) \rangle$. Note that one of the $p_i(x)$'s must have a positive degree.

Let k be a field of quotients of D. Then k[x] is a PID, and M has to be a ring k[x] since $s \geq 2$. In other words, there exist $q_i(x) \in k[x]$ for $i = 1, \ldots, s$ such that

$$p_1(x)q_1(x) + p_2(x)q_2(x) + \cdots + p_s(x)q_s(x) = 1.$$

Moreover, there exist $c_i \in D$ such that $c_i q_i(x) \in D[x]$ for every i = 1, ..., s. Let $c = c_1 c_2 \cdots c_s$. Then $cq_i(x) \in D[x]$ for every i, and thus

$$p_1(x)(cq_1(x)) + p_2(x)(cq_2(x)) + \cdots + p_s(x)(cq_s(x)) = c \in M.$$

Since c is not a unit and a product of a finite number of irreducibles in D, M contains an irreducible element p in D.

Note that there is a natural isomorphism φ from D[x]/pD[x] to $(D/\langle p \rangle)[x]$ where $\langle p \rangle = \{p\alpha \mid \alpha \in D\}$. In other words, for every $f(x) = \sum a_i x^i \in D[x]$,

$$\varphi(f(x) + pD[x]) = \sum (a_i + \langle p \rangle) x^i := \bar{f}(x).$$

Since $\langle p \rangle$ is a maximal ideal of D, i.e, $D/\langle p \rangle$ is a field and $\overline{M} = \langle \bar{p}_1(x), \ldots, \bar{p}_s(x) \rangle$ is a maximal ideal of $(D/\langle p \rangle)[x]$, we have $\overline{M} = \langle \bar{p}_1(x), \ldots, \bar{p}_s(x) \rangle = \langle \bar{q}(x) \rangle$ for

some irreducible polynomial $q(x) \in M$. Furthermore, since every element $\bar{p}_i(x)$ is a multiple of $\bar{q}(x)$ in $(D/\langle p \rangle)[x]$, we have that

$$\bar{p}_i(x) = \bar{q}(x) \cdot \bar{g}_i(x)$$

for some $g_i(x) \in D[x]$ for every i. In other words, $p_i(x) = q(x)g_i(x) + r_i(x)$ for some $r_i(x) \in pD[x]$ for such i. Hence

$$M = \langle p_1(x), \dots, p_s(x) \rangle$$

= $\langle q(x) \cdot g_1(x) + r_1(x), \dots, q(x) \cdot g_s(x) + r_s(x) \rangle$
 $\subseteq \langle p, q(x) \rangle,$

and thus $M = \langle p, q(x) \rangle$ since M is a maximal ideal of D[x] and $M \subseteq \langle p, q(x) \rangle \subseteq M$.

Furthermore, if q(x) = q is a constant, then $1 \in \langle p, q \rangle = M$, which is a contradiction. Therefore, q(x) must be an irreducible polynomial in D[x] of a positive degree.

Using the above isomorphism φ , one can see that every ideal of the form $\langle p, q(x) \rangle$ in D[x], where p is an irreducible element in D and q(x) is an irreducible polynomial in D[x] of a positive degree, is maximal, as we desired.

The following corollary is immediate from Theorem 2.6 since a ring \mathbb{Z} of integers or a ring of Gaussian integers $\mathbb{Z}[i]$ is a PID and has infinitely many primes.

Corollary 2.7. Let D be either a ring of integers \mathbb{Z} or a ring of Gaussian integers $\mathbb{Z}[i]$. Then every maximal ideal of D[x] is not principal and of the form $\langle p, q(x) \rangle$ where p is an irreducible element in D and q(x) is an irreducible polynomial in D[x] of a positive degree. Conversely, if p is an irreducible element in D and q(x) is an irreducible polynomial in D[x] of a positive degree, then every ideal of the form $\langle p, q(x) \rangle$ in D[x] is maximal.

3. Maximal ideals of a polynomial ring D[x] over a DVR D

In this section, we give some examples of integral domains of Krull dimension 2, which don't satisfy the condition of Theorem 2.3. In other words, we shall find maximal ideals of D[x] having height 1 or 2 when D is a discrete valuation ring (see Definition 3.1). Moreover, we will give full descriptions of such maximal ideals.

Definition 3.1 ([1]). A local domain D with a unique maximal ideal M is said to be a discrete valuation ring (DVR for short) if M is principal.

The following remark is well known, so we recall them without proof here (see [1, 2, 3]).

Remark 3.2. Let *D* be a commutative ring with unity 1 and $f(x) = \sum_{i=0}^{\infty} a_i x^i \in D[[x]]$.

(a) f(x) is a unit in D[[x]] if and only if a_0 is a unit in D.

- (b) If a_0 is irreducible in D, then f(x) is irreducible in D[[x]].
- (c) If f(x) is nilpotent in D[[x]], then a_i is nilpotent in D for all $i \geq 0$.
- (d) $f(x) \in \sqrt{D[[x]]}$ if and only if $a_0 \in \sqrt{D}$.
- (e) The contraction of a maximal ideal M of D[[x]] is a maximal ideal of D. In other words, if $M \in \Omega(D[[x]])$, then $M \cap D \in \Omega(D)$. Furthermore, $M = \langle M \cap D, x \rangle$.
- (f) Every prime ideal of D is the contraction of a prime ideal of D[[x]]. In other words,

$$\operatorname{Spec}(D) = \{ \wp \cap D \mid \wp \in D[[x]] \}.$$

Remark 3.3. Let k be a field. Then

- (a) k[[x]] is a DVR, and so PID whose only ideals are $\{0\}$, k[[x]], and $\langle x^k \rangle$ for some $k \in \mathbb{Z}^+$.
- (b) The principal ideal $\langle x \rangle$ is the unique maximal ideal of k[[x]], that is, there is only one irreducible element x in k[[x]].
- **Example 3.4.** (a) Let M be a maximal ideal of $\mathbb{Z}[[x]]$. Then, by Remark 3.2 (e), $M = \langle M \cap \mathbb{Z}, x \rangle$. Moreover, by Remark 3.2 (e) or (f), $M \cap \mathbb{Z}$ is also a maximal ideal of \mathbb{Z} , that is, $M \cap \mathbb{Z} = \langle p \rangle$ for some prime number $p \in \mathbb{Z}$. It follows that $M = \langle p, x \rangle$.
 - (b) Let k be a field. Note that

$$k[[x]][y] \subsetneq k[y][[x]].$$

For example, if

$$f(x) = 1 + xy + x^2y^2 + \dots + x^ny^n + \dots = \sum_{i=0}^{\infty} x^iy^i,$$

then $f(x) \in k[y][[x]]$, but $f(x) \notin k[[x]][y]$.

- **Question 3.5.** (a) Let k[x] be a one variable polynomial ring over a field k. What are maximal ideals M of k[x][[y]]?
 - (b) More generally, let D be a PID. What are maximal ideals of D[[x]]?

By Remark 3.2 (e), we can find an answer to Question 3.5 (see Proposition 3.6), and it gives another example of an integral domain of Krull dimension 2 whose all maximal ideals have height 2 and two minimal generators.

Proposition 3.6. With notations as in Question 3.5, every maximal ideal M of D[[x]] is of the form $\langle p, x \rangle$ for some irreducible element $p \in D$. In particular, a maximal ideal of k[x][[y]] is of the form $\langle p(x), y \rangle$ for some irreducible polynomial $p(x) \in k[x]$.

Proof. Since M is a maximal ideal of D[[x]], by Remark 3.2 (e), $M = \langle M \cap D, x \rangle$ and $M \cap D$ is also a maximal ideal of D. Hence $M \cap D = \langle p \rangle$ for some irreducible element $p \in D$, that is, $M = \langle p, x \rangle$, as we claimed.

Furthermore, since k[x] is also a PID, every maximal ideal of k[x][[y]] is of the form $\langle p(x), y \rangle$ for some irreducible polynomial $p(x) \in k[x]$, as we wished. This completes the proof.

The following Corollary 3.7 is immediate from Proposition 3.6 and Remark 3.2 (e), so we omit the proof here.

Corollary 3.7. With notations as in Question 3.5, every maximal ideal M of $D[[x_1, \ldots, x_n]]$ is of the form $\langle p, x_1, \ldots, x_n \rangle$ for some irreducible element $p \in D$. In particular, a maximal ideal of $k[x][[y_1, \ldots, y_n]]$ is of the form $\langle p(x), y_1, dots, y_n \rangle$ for some irreducible polynomial $p(x) \in k[x]$.

The following corollary is also obtained from Theorem 2.6, Proposition 3.6, and Remark 3.2 (e).

Corollary 3.8. Let $k[x_1, x_2]$ be a two variable polynomial ring over a field k and $R := k[x_1, x_2][[y_1, \ldots, y_n]]$ be an n-variable power series ring over a ring $k[x_1, x_2]$. Then every maximal ideal M of R is of the form $\langle p(x_1), q(x_1, x_2), y_1, \ldots, y_n \rangle$ where $p(x_1)$ is an irreducible polynomial in $k[x_1]$ and $q(x_1, x_2)$ is an irreducible polynomial in $k[x_1, x_2]$ such that $\bar{q}(x_1, x_2) \in (k[x_1]/\langle p(x_1)\rangle[x_2])$ is also irreducible.

Now we consider a ring k[[x]][y] over a field k. Note that there are two kinds of maximal ideals in k[[x]][y] of either height 1 or 2 by Theorem 2.3 since k[[x]] has only one irreducible element x. Hence we have a natural question as follows.

Question 3.9. What are maximal ideals in k[[x]][y]?

Before we give an answer to Question 3.9, we shall prove slightly more general case here.

Theorem 3.10. Let D be a DVR with a maximal ideal $\langle p \rangle$ and M be a maximal ideal of D[x]. If M has height 2, then M is of the form $\langle p, q(x) \rangle$ for some irreducible non-constant polynomial $q(x) \in D[x]$, and if M has height 1, then M is of the form $\langle q(x) \rangle$ for some irreducible non-constant polynomial $q(x) = a_0 + a_1x + \cdots + a_tx^t \in D[x]$ where a_0 is a unit in D, and $p \mid a_i$ for every $i = 1, 2, \ldots, t$.

Proof. Let $\wp = M \cap D$. Then \wp is either $\langle 0 \rangle$ or $\langle p \rangle$ since $\langle 0 \rangle$ and $\langle p \rangle$ are only prime ideals in D.

First, assume that $\wp = \langle p \rangle$. Let $\varphi : D[x] \to (D/\langle p \rangle)[x]$ be given by

$$\varphi(a_0 + a_1x + \dots + a_sx^s) = (a_0 + \langle p \rangle) + (a_1 + \langle p \rangle)x + \dots + (a_s + \langle p \rangle)x^s$$

for $a_0 + a_1x + \cdots + a_sx^s \in D[x]$. Then φ is a ring homomorphism from D[x] onto $(D/\langle p \rangle)[x]$. Since M is a maximal ideal in D[x], $\varphi(M)$ is also a maximal ideal $(D/\langle p \rangle)[x]$. Hence

$$\varphi(M) = \langle \overline{q(x)} \rangle$$

for some irreducible polynomial $q(x) \in D[x]$ since $D/\langle p \rangle$ is a field. We now show that $M = \langle p, q(x) \rangle$. Sine p and q(x) are in M, it is clear that $\langle x, q(x) \rangle \subseteq M$. Conversely, let $f(x) \in M$. Then

$$\varphi(f(x)) = \overline{f(x)} = \overline{q(x)} \cdot \overline{g(x)}$$

for some $g(x) \in D[x]$. In other words,

$$f(x) = p \cdot h(x) + q(x)g(x)$$

for some $h(x) \in D[x]$, and hence $f(x) \in \langle p, q(x) \rangle$. Thus $M = \langle p, q(x) \rangle$, as we claimed.

Now suppose that $\wp = \langle 0 \rangle$. Using the same idea as in the proof of Theorem 2 in [4], we have that $M = \langle q(x) \rangle$ for some irreducible polynomial

$$q(x) = a_0 + a_1 x + \dots + a_t x^t \in D[x],$$

where a_0 is a unit in D, $p \mid a_i$ for every i = 1, 2, ..., t, and M has height 1. This completes the proof.

The following corollary is immediate from Theorem 3.10 since k[[x]] is a DVR with a unique maximal ideal $\langle x \rangle$ and gives the complete answer to Question 3.9.

Corollary 3.11. With notation as in Question 3.9, let M be a maximal ideal of k[[x]][y]. If M contains x, then M is a maximal ideal of height 2 and of the form $\langle x, p(y) \rangle$ for some irreducible polynomial $p(y) \in k[y]$. If M does not contain x, then M is a principal maximal ideal of height 1 and of the form $\langle p(y) \rangle$ for some irreducible polynomial $p(y) = p_0(x) + p_1(x)y + \cdots + p_t(x)y^t \in k[[x]][y], p_i(x) \in k[[x]]$ where $p_0(x) = a$ for some nonzero $a \in k$ and $x \mid p_i(x)$ for $i = 1, 2, \ldots, t$.

REFERENCES

- 1. M.F. Atiyah and I.G. Macdonald, *Introduction to Commutative Algebra*, Addison-Wesley, Reading, MA, (1969).
- 2. T.W. Hungerford, Algebra, Springer-Verlag, (1973).
- 3. J.J. Watkins, Topics in Commutative Ring Theory, Princeton University Press. (2007).
- 4. F. Zanello, When Are There Infinitely Many Irreducible Elements in a Principal Ideal Domain?, American Mathematical Monthly, 111(2):150-152, (2004).

Department of Mathematics, Sungshin Women's University, Seoul, Korea, 136-742 ysshin@sungshin.ac.kr